Browse > Article
http://dx.doi.org/10.7314/APJCP.2015.16.6.2187

Cellular Protrusions - Lamellipodia, Filopodia, Invadopodia and Podosomes - and their Roles in Progression of Orofacial Tumours: Current Understanding  

Alblazi, Kamila Mohamed Om (Department of Oro-Maxillofacial Surgical and Medical Sciences, Faculty of Dentistry, University of Malaya)
Siar, Chong Huat (Department of Oro-Maxillofacial Surgical and Medical Sciences, Faculty of Dentistry, University of Malaya)
Publication Information
Asian Pacific Journal of Cancer Prevention / v.16, no.6, 2015 , pp. 2187-2191 More about this Journal
Abstract
Background: Protrusive structures formed by migrating and invading cells are termed lamellipodia, filopodia, invadopodia and podosomes. Lamellipodia and filopodia appear on the leading edges of migrating cells and function to command the direction of the migrating cells. Invadopodia and podosomes are special F-actin-rich matrix-degrading structures that arise on the ventral surface of the cell membrane. Invadopodia are found in a variety of carcinomatous cells including squamous cell carcinoma of head and neck region whereas podosomes are found in normal highly motile cells of mesenchymal and myelomonocytic lineage. Invadopodia-associated protein markers consisted of 129 proteins belonging to different functional classes including WASP, NWASP, cortactin, Src kinase, Arp 2/3 complex, MT1-MMP and F-actin. To date, our current understanding on the role(s) of these regulators of actin dynamics in tumors of the orofacial region indicates that upregulation of these proteins promotes invasion and metastasis in oral squamous cell carcinoma, is associated with poor/worst prognostic outcome in laryngeal cancers, contributes to the persistent growth and metastasis characteristics of salivary gland adenoid cystic carcinoma, is a significant predictor of increased cancer risk in oral mucosal premalignant lesions and enhances local invasiveness in jawbone ameloblastomas.
Keywords
Lamellipodia; filopodia; invadopodia; podosomes;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Ayala I, Baldassarre M, Giacchetti G, et al (2008). Multiple regulatory inputs converge on cortactin to control invadopodia biogenesis and extracellular matrix degradation. J Cell Sci, 121, 369-78.   DOI
2 Baldwin GS, Lio DS-S, Ferrand A, et al (2014). Activation of Src family tyrosine kinases by ferric ions. Biochim Biophys Acta, 1844, 487-96.   DOI
3 Bryce NS, Clark ES, Leysath JML, et al (2005). Cortactin promotes cell motility by enhancing lamellipodial persistence. Curr Biol, 15, 1276-85.   DOI
4 Buccione R, Caldieri G, Avala I (2009). Invadopodia: specialized tumor cells structures for the focal degradation of the extracellular matrix. Cancer Metastasis Rev, 28, 137-49.   DOI
5 Buccione R, Orth JD, McNiven, MA (2004). Foot and mouth: podosomes, invadopodia and circular dorsal ruffles. Nat Rev Mol Cell Biol, 5, 647-57.   DOI
6 Buday L, Downward J (2007). Roles of cortactin in tumor pathogenesis. Biochim Biophys Acta, 1775, 263-73.
7 Condeelis J, Segall, JE (2003). Intravital imaging of cell movement in tumours. Nat Rev Cancer, 3, 921-30.   DOI
8 David-Pfeuty T, Singer SJ (1980). Altered distributions of the cytoskeletal proteins vinculin and alpha-actinin in cultured fibroblasts transformed by Rous sarcoma virus. Proc Natl Acad Sci USA, 77, 6687-91.   DOI
9 de Vicente JC, Rosado P, Lequerica-Fernandez P, et al (2013). Focal adhesion kinase overexpression: correlation with lymph node metastasis and shorter survival in oral squamous cell carcinoma. Head Neck, 35, 826-30.   DOI
10 Destaing O, Block MR, Planus E, Albiges-Rizo C (2011). Invadosome regulation by adhesion signaling. Curr Opin Cell Biol, 23, 597-606.   DOI
11 Hwang YS, Park KK, Chung WY (2012). Invadopodia formation in oral squamous cell carcinoma: the role of epidermal growth factor receptor signalling. Arch Oral Biol, 57, 335-43   DOI
12 Isaac BM, Ishihara D, Nusblat LM, et al (2010). N-WASP has the ability to compensate for the loss of WASP in macrophage podosome formation and chemotaxis. Exp Cell Res, 316, 3406-16.   DOI
13 Jimenez L, Sharma, VP, Lim J, et al (2014). MicroRNA-375 impairs head and neck squamous cell carcinoma invasion by suppressing invadopodia activity. Cancer Res, 74, 1452.   DOI
14 Linder S (2007). The matrix corroded: podosomes and invadopodia in extracellular matrix degradation. Trends Cell Biol, 17, 107-17.   DOI
15 Murphy DA, Courtneidge SA (2011). The 'ins' and 'outs' of podosomes and invadopodia: characteristics, formation and function. Nat Rev Mol Cell Biol, 12, 413-26.   DOI
16 Nascimento CF, Gama-De-Souza LN, Freitas VM, Jaeger RG (2010). Role of MMP9 on invadopodia formation in cells from adenoid cystic carcinoma. Study by laser scanning confocal microscopy. Microsc Res Tech, 273, 99-108.
17 Nakane K, Fujita Y, Terazawa R, et al (2012). Inhibition of cortactin and SIRT1 expression attenuates migration and invasion of prostate cancer DU145 cells. Int J Urol, 19, 71-9.   DOI
18 Noh SJ, Baek HA, Park HS, et al (2013). Expression of SIRT1 and cortactin is associated with progression of non-small cell lung cancer. Pathol Res Pract, 209, 365-70.   DOI
19 Pinheiro JJV, Nascimento CF, Freitas VM, et al (2011). Invadopodia proteins, cortactin and membrane type I matrix metalloproteinase (MT1-MMP) are expressed in ameloblastoma. Histopathol, 59, 1261-79.
20 Weaver AM (2008). Cortactin in tumor invasiveness. Cancer Lett, 265, 157-66.   DOI
21 Weaver AM, Heuser JE, Karginov AV, et al (2002). Interaction of cortactin and N-WASP with Arp2/3 complex. Curr Biol, 12, 1270-8.   DOI
22 Webb BA, Eves R, Mak AS (2006). Cortactin regulates podosome formation: roles of the protein interaction domains. Exp Cell Res, 312, 760-9.   DOI
23 Yamada S, Yanamoto S, Kawasaki G, Mizuno A, Nemoto TK (2010). Overexpression of cortactin increases invasion potential in oral squamous cell carcinoma. Pathol Oncol Res, 16, 523-31.   DOI
24 Yamaguchi H, Condeelis, J (2007). Regulation of the actin cytoskeleton in cancer cell migration and invasion. Biochim Biophys Acta, 1773, 642-52.   DOI
25 Artym VV, Zhang Y, Seillier-Moiseiwitsch F, Yamada KM, Mueller SC (2006). Dynamic interactions of cortactin and membrane type 1 matrix metalloproteinase at invadopodia: defining the stages of invadopodia formation and function. Cancer Res, 66, 3034-43.   DOI
26 Aihara T, Oda, T (2013). Cooperative and non-cooperative conformational changes of F-actin induced by cofilin. Biochem Biophys Res Commun, 435, 229-33.   DOI
27 Ambrosio EP, Rosa FE, Domingues MA, et al (2011) Cortactin is associated with perineural invasion in the deep invasive front area of laryngeal carcinomas. Hum Pathol, 42, 1221-9.   DOI
28 Ammer AG, Weed SA (2008). Cortactin branches out: roles in regulating protrusive actin dynamics. Cell Motil Cytoskeleton, 65, 687-707.   DOI
29 Elsberger B (2014). Translational evidence on the role of Src kinase and activated Src kinase in invasive breast cancer. Crit Rev Oncol Hematol, 89, 343-51.   DOI
30 Eckert MA, Yang J (2011). Targeting invadopodia to block breast cancer metastasis. Oncotarget, 2, 562-8   DOI
31 Gagat M, Grzanka D, Izdebska M, et al (2014). Tropomyosin-1 protects endothelial cell-cell junctions against cigarette smoke extract through F-actin stabilization in EA.hy926 cell line. Acta Histochem, 116, 606-18.   DOI
32 Garcia E, Jonesb GE, Macheskyc LM, Antona IM (2012). WIP: WASP-interacting proteins at invadopodia and podosomes. Eur J Cell Biol, 9, 869-77.
33 Genot E, Gligorijevic B (2014). Invadosomes in their natural habitat. Eur J Cell Biol, 93, 367-79.   DOI
34 Greer RO Jr, Said S, Shroyer KR, Marileila VG, Weed SA (2007). Overexpression of cyclin D1 and cortactin is primarily independent of gene amplification in salivary gland adenoid cystic carcinoma. Oral Oncol, 43, 735-41.   DOI
35 Grigera PR, Ma L, Borgman CA, et al (2012). Mass spectrometric analysis identifies a cortactin-RCC2/TD60 interaction in mitotic cells. J Proteomics, 75, 2153-9.   DOI
36 Hauck CR, Hsia DA, Ilic D, Schlaepfer DD (2002) v-Src SH3-enhanced interaction with focal adhesion kinase at beta 1 integrin-containing invadopodia promotes cell invasion. J Biol Chem, 277, 12487-90.   DOI
37 Hong BH, Wu CH, Yeh CT, Yen GC (2013). Invadopodia-associated proteins blockade as a novel mechanism for 6-shogaol and pterostilbene to reduce breast cancer cell motility and invasion. Mol Nutr Food Res, 57, 886-95.   DOI
38 Seltana A, Guezguez A, Lepage, M, Basora, N, Beaulieu, J-F (2013). Src family kinase inhibitor PP2 accelerates differentiation in human intestinal epithelial cells. Biochem Biophys Res Commun, 430, 1195-200.   DOI
39 Saltel F, Daubon T, Juin A, et al (2011). Invadosomes: intriguing structures with promise. Eur J Cell Biol, 90, 100-7.   DOI
40 Seano G, Daubon T, Genot E, Primo L (2014). Podosomes as novel players in endothelial biology. Eur J Cell Biol, 93, 405-12.   DOI
41 Shields MA, Krantz SB, Bentrem DJ, Dangi-Garimella S, Munshi HG (2012). Interplay between ${\beta}1$-integrin and Rho signaling regulates differential scattering and motility of pancreatic cancer cells by snail and Slug proteins. J Biol Chem, 287, 6218-29.   DOI
42 Shvetsov A, Berkane E, Chereau D, Dominguez R, Reisler E (2009). The actin-binding domain of cortactin is dynamic and unstructured and affects lateral and longitudinal contacts in F-actin. Cell Motil Cytoskeleton, 66, 90-8.   DOI
43 Sibony-Benyamini H, Gil-Henn H (2012). Invadopodia: The leading force. Eur J Cell Biol, 91, 896-901.   DOI
44 Spinardi L, Rietdorf J, Nitsch L, et al (2004). A dynamic podosome-like structure of epithelial cells. Exp Cell Res, 295, 360-74.   DOI
45 Stevenson RP, Veltman D, Machesky LM (2012). Actin-bundling proteins in cancer progression at a glance. J Cell Sci, 125, 1073-9.   DOI
46 Stylli SS, Kaye, AH, Lock P (2008). Invadopodia: At the cutting edge of tumour invasion. J Clin Neurosci, 15, 725-37.   DOI
47 Suraneni P, Rubinstein B, Unruh JR, et al (2012). The Arp2/3 complex is required for lamellipodia extension and directional fibroblast cell migration. J Cell Biol, 197, 239-51.   DOI