Browse > Article
http://dx.doi.org/10.7314/APJCP.2015.16.3.863

Anti-cancer Properties of a Sesquiterpene Lactone-bearing Fraction from Artemisia khorassanica  

Rabe, Shahrzad Taghizadeh (Immunology Research Center, Bu-Ali Research Institute, School of Medicine, Mashhad University of Medical Science)
Emami, Seyed Ahmad (Department of Pharmacognosy, Mashhad University of Medical Science)
Iranshahi, Mehrdad (Biotechnology Research Center, School of Pharmacy, Mashhad University of Medical Science)
Rastin, Maryam (Immunology Research Center, Bu-Ali Research Institute, School of Medicine, Mashhad University of Medical Science)
Tabasi, Nafise (Immunology Research Center, Bu-Ali Research Institute, School of Medicine, Mashhad University of Medical Science)
Mahmoudi, Mahmoud (Immunology Research Center, Bu-Ali Research Institute, School of Medicine, Mashhad University of Medical Science)
Publication Information
Asian Pacific Journal of Cancer Prevention / v.16, no.3, 2015 , pp. 863-868 More about this Journal
Abstract
Background: Artemisia species are important medicinal plants throughout the world. The present in vitro study, using a sesquiterpene lactone-bearing fraction prepared from Artemisia khorassanica (SLAK), sought to investigate anti-cancer properties of this plant and elucidate potential underlying mechanisms for the effects. Materials and Methods: Anti-cancer potential was evaluated by toxicity against human melanoma and fibroblast cell lines. To explore the involved pathways, pattern of any cell death was determined using annexin-V/PI staining and also the expression of Bax and cytochrome c was investigated by Western blotting. Results: The results showed that SLAK selectively caused a concentration-related inhibition of proliferation of melanoma cells that was associated with remarkable increase in early events and over-expression of both Bax and cytochrome c. Conclusions: The current experiment indicates that Artemisia may have anti-cancer activity. We anticipate that the ingredients may be employed as therapeutic candidates for melanoma.
Keywords
Artemisia khorassanica; melanoma cell line; apoptosis; bax; cytochrome c;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
연도 인용수 순위
1 Abad Martinez MJ, Bedoya del Olmo LM, Ticona LA, Bermejo Benito P (2012). Artemisia L. genus: A review of bioactive sesquiterpene lactones. Stud Nat Prod Chem, 37, 43-65.   DOI
2 Antonsson B, Conti F, Ciavatta A, Montessuit S, Lewis S, Martinou I (1997). Inhibi-tion of Bax channel-forming activity by Bcl-2. Science, 277, 370-2.   DOI   ScienceOn
3 Chang HY, Sneddon JB, Alizadeh AA, et al (2007). Gene expression signature of fibro-blast serum response predicts human cancer progression: Similarities between tumors and wounds. PLoS Biol, 42, 7.
4 Choi EJ, Lee S, Chae JR, et al (2011). Eupatilin inhibits lipopolysaccharide-induced expression of inflammatory mediators in macrophages. Life Sci, 20, 1121-6.
5 Choi E, Park H, Lee J, Kim G (2013). Anti-cancer, anti-obesity, and anti-inflammatory activity of Artemisia species in vitro. J Trad Chinese Med, 33, 92-7.   DOI
6 Craig WJ (1999). Health-promoting properties of common herbs. Am J Clin Nutr, 70, 491-9.
7 Demirci U, Coskun U, Karaca H, et al (2014). Docetaxel and cisplatin in first line treatment of patients with unknown primary cancer: a multicenter study of the anatolian society of medical oncology. Asian Pac J Cancer Prev, 15, 1581-4.   DOI   ScienceOn
8 Emami SA, Aghazari F (2011). Endemic Phanerogams in the Flora of Iran. Teheran, Iran: Teheran University Publications, pp. 450-1.
9 Emami SA, Zamanai Taghizadeh Rabe S, Iranshahi M, Ahi A, Mahmoudi M (2010). Sesquiterpene lactone fraction from Artemisia khorassanica inhibits inducible nitric oxide synthase and cyclooxygenase-2 expression via inactivation of NF-${\kappa}B$. Immunopharmacol Immunotoxicol, 32, 688-95.   DOI
10 Emami SA, Zamani Taghizadeh Rabe S, Ahi A, Mahmoudi M, Tabasi N (2009). Study of the cytotoxic and pro-apoptotic activity of Artemisia annua extracts. Pharmacology Online, 3, 1062-9.
11 Feng G, Wang X, You C, et al (2013). Anti-proliferative potential of Artemisia capillaris polysaccharide against human nasopharyngeal carcinoma cells. Carbohydrate Polymers, 92, 1040-5.   DOI
12 Firestone GL, Sundar SN (2009). Anti-cancer activities of artemisinin and its bioactive derivatives. Expert Rev Mol Med, 11, 1-15.   DOI   ScienceOn
13 Green LC, Glowski J, Skipper PL, Wishnok JS, Tannenbaum SR (1982). Analysis of nitrate, nitrite and [15N] in biological fluids. Ann Biochem, 126, 131-8.   DOI
14 Haochuan Li, Niederkorn JY, Neelam S, Alizadeh H (2006). Down-regulation of survi-vin expression enhances sensitivity of cultured uveal melanoma cells to cisplatin treatment. Exp Eye Res, 83, 176-82.   DOI
15 Iranshahi M, Emami SA, Mahmoud-Soltani M (2007). Detection of sesquiterpene lactones in ten Artemisia species population of Khorasan provinces. IJBMS, 10, 183-8.
16 Jiang W, Huang Y, Wang JP, Yu XY, Zhang LY (2013). The synergistic anticancer effect of artesunate combined with allicin in osteosarcoma cell line in vitro and in vivo. Asian Pac J Cancer Prev, 14, 4615-9.   DOI   ScienceOn
17 Lu YY, Chen TS, Qu JL, et al (2009). Dihydroartemisinin (DHA) induces caspase-3-dependent apoptosis in human lung adenocarcinoma ASTC-a-1 cells. J Biomed Sci, 16, 16-31.   DOI   ScienceOn
18 Kim JH, Kim HK, Kwon Kang S, et al (2002). New sesquiterpene-monoterpene lactone, artemisolide, isolated from Artemisia argyi. Tetrahedron Lett, 43, 6205-8.   DOI
19 Kma L (2013). Synergistic effect of resveratrol and radiotherapy in control of cancers. Asian Pac J Cancer Prev, 14, 6197-208.   DOI
20 Liu Y, Cui YF (2013). Synergism of cytotoxicity effects of triptolide and artesunate combination treatment in pancreatic cancer cell lines. Asian Pac J Cancer Prev, 14, 5243-8.   DOI   ScienceOn
21 Menon KC. 2014. Optimizing Nutrition Support in Cancer Care. Asian Pac J Cancer Prev, 15 (6), 2933-2934.   DOI
22 Mhaidat NM, Wang Y, Kiejda KA, Zhang XD, Hersey P (2007). Docetaxel-induced apoptosis in melanoma cells is dependent on activation of caspase-2. Mol Cancer Ther, 6, 752-61.   DOI
23 Mol W, Matyja M, Filip B, Wietrzyk J, Boryczka S (2008). Synthesis and anti-prolifera-tive activity in vitro of novel (2-butynyl) thioquinolines. Bioorg Med Chem, 16, 8136-41.   DOI
24 Mosmann T (1983). Rapid colorimetric assay for cellular growth and survival: Application to proliferation cytotoxicity assay. J Immunol Meth, 65, 55-63.   DOI
25 Podlech D (1986). Compositae VI anthemideae. in: Flora Iranica (Rechinger, K. H., Ed). Graz, Germany: Akademische Druck-u Verlagsansalt, pp. 159-223.
26 Priestap HA, Galvis , Rivero N, et al (2012). Dehydroleucodine and dehydroparishin-B inhibit proliferation and motility of B16 melanoma cells. Phytochem Lett, 5, 581-5.   DOI
27 Sun SY, Hail N, Lotan R (2004). Apoptosis as a novel target for cancer chemopreven-tion. J Natl Cancer Inst, 96, 662-72.   DOI
28 Rakic GM, Sipka SG, KaluCerovic GN, et al (2009). Novel trans-dichloridoplatinum (II) complexes with 3- and 4-acetylpyridine: Synthesis, characterization, DFT calculations and cytotoxicity. Eur J Med Chem, 44, 1921-5.   DOI
29 Rosse T, Olivier R, Monney L, et al (1998). Bcl-2 prolongs cell survival after Bax-induced release of cytochrome c. Nature, 391, 496-9.   DOI
30 Siegel R, DeSantis C, Virgo K, et al (2012). Cancer treatment and survivorship statistics. CA Cancer J Clin, 62, 220-41.   DOI
31 Sun SY, Hail N, Lotan R (2004). Apoptosis as a novel target for cancer chemopreven-tion. J Natl Cancer Inst, 96, 662-72.   DOI
32 Tao Y, Zhang ML, Ma PC, et al (2012). Triptolide inhibits proliferation and induces apoptosis of human melanoma A375 cells. Asian Pac J Cancer Prev, 13, 1611-5.   DOI
33 Tapsell LC, Hemphill I, Cobiac L, et al (2006). Health benefits of herbs and spices: The past, the present, the future. Med J Australia, 185, 4-24.
34 Valless J, Garcia S, Hidalgo O, et al (2011). Biology, genome evolution, biotechnological issues and research including applied perspectives in Artemisia (Asteraceae). Adv Botan Res, 60, 349-419.   DOI
35 van der Kooy F, Sullivan SE (2013). The complexity of medicinal plants: The traditional Artemisia annua formulation, current status and future perspectives. J Ethnopharmacol, 150, 1-13.   DOI
36 Wua JJ, Zhang XD, Gillespie S, Hersey P (2005). Selection for TRAIL resistance results in melanoma cells with high proliferative potential. FEBS Lett, 579, 1940-4.   DOI   ScienceOn
37 Zhai DD, Supaibulwatana K, Zhong JJ (2010). Inhibition of tumor cell proliferation and induction of apoptosis in human lung carcinoma 95-D cells by a new sesquiterpene from hairy root cultures of Artemisia annua. Phytomedicine, 17, 856-61.   DOI
38 Yang Z, Ding J, Yang C, Gao Y, et al (2012). Immunomodulatory and anti-inflammatory properties of Artesunate in experimental colitis. Curr Med Chem, 19, 4541-51.   DOI
39 Zamanai Taghizadeh Rabe S, Mahmoudi M, Ahi A, Emami SA (2011). Anti-proliferative effects of extracts from Iranian Artemisia species on cancer cell lines. Pharm Biol, 49, 962-9.   DOI
40 Zamani Taghizadeh Rabe S, Mousavi SH, Tabasi N, et al (2014). Rose bengal suppresses gastric cancer cell proliferation via apoptosis and inhibits nitric oxide formation in macrophages. J Immunotoxicol (In press).
41 Zhang XD, Franco A, Myers K, et al (1999). Relation of TNFrelated apoptosis-inducing ligand (TRAIL) receptor and FLICE-inhibitory protein expression to TRAIL-induced apoptosis of melanoma. Cancer Res, 59, 2747-53.
42 Zhang CZ, Zhang H, Yun J, Chen GG, Bo San Lai P (2012). Dihydroartemisinin exhibits anti-tumor activity toward hepatocellular carcinoma in vitro and in vivo. Biochem Pharmacol, 83, 1278-89.   DOI