Browse > Article
http://dx.doi.org/10.7314/APJCP.2014.15.9.3865

Targeting Cancer with Nano-Bullets: Curcumin, EGCG, Resveratrol and Quercetin on Flying Carpets  

Aras, Aliye (Department of Biology, Faculty of Science, Istanbul University)
Khokhar, Abdur Rehman (Department of Radiology, RLMC)
Qureshi, Muhammad Zahid (Department of Biochemistry, GCU)
Silva, Marcela Fernandes (Universidade Estadual de Maringa)
Sobczak-Kupiec, Agnieszka (Cracow University of Technology)
Pineda, Edgardo Alfonso Gomez (Universidade Estadual de Maringa)
Hechenleitner, Ana Adelina Winkler (Universidade Estadual de Maringa)
Farooqi, Ammad Ahmad (Laboratory for Translational Oncology and Personalized Medicine, RLMC)
Publication Information
Asian Pacific Journal of Cancer Prevention / v.15, no.9, 2014 , pp. 3865-3871 More about this Journal
Abstract
It is becoming progressively more understandable that different phytochemicals isolated from edible plants interfere with specific stages of carcinogenesis. Cancer cells have evolved hallmark mechanisms to escape from death. Concordant with this approach, there is a disruption of spatiotemproal behaviour of signaling cascades in cancer cells, which can escape from apoptosis because of downregulation of tumor suppressor genes and over-expression of oncogenes. Genomic instability, intra-tumor heterogeneity, cellular plasticity and metastasizing potential of cancer cells all are related to molecular alterations. Data obtained through in vitro studies has convincingly revealed that curcumin, EGCG, resveratrol and quercetin are promising anticancer agents. Their efficacy has been tested in tumor xenografted mice and considerable experimental findings have stimulated researchers to further improve the bioavailability of these nutraceuticals. We partition this review into different sections with emphasis on how bioavailability of curcumin, EGCG, resveratrol and quercetin has improved using different nanotechnology approaches.
Keywords
Resveratrol; nanotechnology; EGCG; apoptosis;
Citations & Related Records
Times Cited By KSCI : 11  (Citation Analysis)
연도 인용수 순위
1 Allan B (1999). Closer to nature: new biomaterials and tissue engineering in ophthalmology. Br J Ophthalmol, 83, 1235-40.   DOI
2 Alotaibi A, Bhatnagar P, Najafzadeh M, Gupta KC, Anderson D (2013). Tea phenols in bulk and nanoparticle form modify DNA damage in human lymphocytes from colon cancer patients and healthy individuals treated in vitro with platinum-based chemotherapeutic drugs. Nanomedicine, 8, 389-401.   DOI   ScienceOn
3 Asghar W, Islam M, Wadajkar AS, et al (2012). PLGA micro-and nanoparticles loaded into gelatin scaffold for controlled drug release. Nanotechnology, IEEE Transactions on, 11, 546-53.
4 Vanic Z, Skalko-Basnet N (2013). Nanopharmaceuticals for improved topical vaginal therapy: Can they deliver? Eur J Pharm Sci, 50, 29-41.   DOI   ScienceOn
5 Vergaro V, Lvov YM, Leporatti S (2012). Halloysite Clay Nanotubes for Resveratrol Delivery to Cancer Cells. Macromol Biosci, 12, 1265-71.   DOI   ScienceOn
6 Tsou T-L, Tang S-T, Huang Y-C, et al (2005). Poly (2-hydroxyethyl methacrylate) wound dressing containing ciprofloxacin and its drug release studies. J Mater Sci Mater Med, 16, 95-100.   DOI
7 Tang J-C, Shi H-S, Wan L-Q, Wang Y-S, Wei Y-Q (2013). Enhanced antitumor effect of curcumin liposomes with local hyperthermia in the LL/2 model. Asian Pac J Cancer Prev, 14, 2307-10.   과학기술학회마을   DOI   ScienceOn
8 Tang L,Cheng J (2013). Nonporous silica nanoparticles for nanomedicine application. Nano Today, 8, 290-312.   DOI   ScienceOn
9 Teiten M-H, Gaascht F, Dicato M, Diederich M (2013). Anticancer bioactivity of compounds from medicinal plants used in European medieval traditions. Biochem Pharmacol. 86, 1239-47.   DOI   ScienceOn
10 Sjaarda DR, Roach DR, Yagubi AI, Castle AJ, Svircev AM (2013). Role of bacterial exopolysaccharides and monosaccharides in Erwinia amylovora resistance to bacteriophages. Canadian J Plant Pathol, 35, 125.
11 Sharma RK, Das S, Maitra A (2005). Enzymes in the cavity of hollow silica nanoparticles. J Colloid Interface Sci, 284, 358-61.   DOI   ScienceOn
12 Shukla R, Chanda N, Zambre A, et al (2012). Laminin receptor specific therapeutic gold nanoparticles (198AuNP-EGCg) show efficacy in treating prostate cancer. Proc Natl Acad Sci USA, 109, 12426-31.   DOI
13 Singh M, Manikandan S, Kumaraguru A (2011). Nanoparticles: A new technology with wide applications. Res J Nanosci Nanotechnol, 1, 1-11.   DOI
14 Sobczak-Kupiec A, Malina D, Piatkowski M, et al (2012). Physicochemical and Biological Properties of Hydrogel/Gelatin/Hydroxyapatite PAA/G/HAp/AgNPs Composites Modified with Silver Nanoparticles. J Nanosci Nanotechnol, 12, 9302-11.   DOI
15 Sperling R, Parak W (2010). Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles. Philos Trans A Math Phys Eng Sci, 368, 1333-83.   DOI   ScienceOn
16 Stakleff KS, Sloan T, Blanco D, et al (2012). Resveratrol exerts differential effects in vitro and in vivo against ovarian cancer cells. Asian Pac J Cancer Prev, 13, 1333-40.   과학기술학회마을   DOI   ScienceOn
17 Stober W, Fink A, Bohn E (1968). Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci, 26, 62-9.   DOI   ScienceOn
18 Ray L, Kumar P, Gupta KC (2013). The activity against Ehrlich's ascites tumors of doxorubicin contained in self assembled, cell receptor targeted nanoparticle with simultaneous oral delivery of the green tea polyphenol epigallocatechin-3-gallate. Biomaterials, 34, 3064-76.   DOI   ScienceOn
19 Sun J, Bi C, Chan HM, et al (2013). Curcumin-loaded solid lipid nanoparticles have prolonged in vitro antitumour activity, cellular uptake and improved in vivo bioavailability. Colloids Surf B Biointerfaces, 111, 367-75.   DOI   ScienceOn
20 Sanna V, Roggio AM, Siliani S, et al (2012). Development of novel cationic chitosan- and anionic alginate-coated poly(D,L-lactide-co-glycolide) nanoparticles for controlled release and light protection of resveratrol. Int J Nanomedicine, 7, 5501-16.
21 Roy M,Mukherjee S (2014). Reversal of Resistance towards Cisplatin by Curcumin in Cervical Cancer Cells. Asian Pac J Cancer Prev: APJCP, 15, 1403.   과학기술학회마을   DOI   ScienceOn
22 Salehi P, Makhoul G, Roy R, et al (2013). Curcumin loaded NIPAAM/VP/PEG-A nanoparticles: physicochemical and chemopreventive properties. J Biomater Sci Polym Ed, 24, 574-88.   DOI   ScienceOn
23 Sanna V, Siddiqui IA, Sechi M, Mukhtar H (2013). Resveratrol-Loaded Nanoparticles Based on Poly (epsilon-caprolactone) and Poly(d,l-lactic-co-glycolic acid)-Poly (ethylene glycol) Blend for Prostate Cancer Treatment. Mol Pharm, 10, 3871-81.   DOI
24 Sawadogo WR, Schumacher M, Teiten M-H, Dicato M, Diederich M (2012). Traditional West African pharmacopeia, plants and derived compounds for cancer therapy. Biochem Pharmacol, 84, 1225-40.   DOI   ScienceOn
25 Ma S, Wang Y, Zhu Y (2011). A simple room temperature synthesis of mesoporous silica nanoparticles for drug storage and pressure pulsed delivery. Journal of Porous Materials, 18, 233-9.   DOI
26 Saxena V,Hussain MD (2013). Polymeric mixed micelles for delivery of curcumin to multidrug resistant ovarian cancer. J Biomed Nanotechnol, 9, 1146-54.   DOI   ScienceOn
27 Sharma C, Nusri Q-A, Begum S, et al (2012). (-)-Epigallocatechin-3-gallate induces apoptosis and inhibits invasion and migration of human cervical cancer cells. Asian Pac J Cancer Prev: APJCP, 13, 4815-22.   과학기술학회마을   DOI   ScienceOn
28 Mohanraj V, Chen Y (2006). Nanoparticles-a review. Tropical Journal of Pharmaceutical Research, 5, 561-73.
29 Michaud-Levesque J, Bousquet-Gagnon N, Beliveau R (2012). Quercetin abrogates IL-6/STAT3 signaling and inhibits glioblastoma cell line growth and migration. Experimental Cell Research, 318, 925-35.   DOI   ScienceOn
30 Miladi K, Sfar S, Fessi H, Elaissari A (2013). Drug carriers in osteoporosis: Preparation, drug encapsulation and applications. Int J Pharm, 445, 181-95.   DOI   ScienceOn
31 Pezzuto JM (1997). Plant-derived anticancer agents. Biochem Pharmacol, 53, 121-33.   DOI   ScienceOn
32 Pool H, Mendoza S, Xiao H, McClements DJ (2013). Encapsulation and release of hydrophobic bioactive components in nanoemulsion-based delivery systems: Impact of physical form on quercetin bioaccessibility. Food Funct, 4, 162-74.   DOI   ScienceOn
33 Kulisic-Bilusic T, Schmoller I, Schnabele K, Siracusa L, Ruberto G (2012). The anticarcinogenic potential of essential oil and aqueous infusion from caper (Capparis spinosa L). Food Chemistry, 132, 261-7.   DOI   ScienceOn
34 Rachmawati H, Edityaningrum CA, Mauludin R (2013). Molecular Inclusion Complex of Curcumin-$\beta$-Cyclodextrin Nanoparticle to Enhance Curcumin Skin Permeability from Hydrophilic Matrix Gel. Aaps Pharmscitech, 14, 1303-12.   DOI   ScienceOn
35 Rao CR, Kulkarni GU, Thomas PJ, Edwards PP (2000). Metal nanoparticles and their assemblies. Chem Soc Rev, 29, 27-35.   DOI   ScienceOn
36 Rao KS, El-Hami K, Kodaki T, Matsushige K, Makino K (2005). A novel method for synthesis of silica nanoparticles. J Colloid Interface Sci, 289, 125-31.   DOI   ScienceOn
37 Khan N, Bharali DJ, Adhami VM, et al (2013). Oral administration of naturally occurring chitosan-based nanoformulated green tea polyphenol EGCG effectively inhibits prostate cancer cell growth in a xenograft model. Carcinogenesis, 35, 415-23.
38 Kim MI, Ham HO, Oh S-D, et al (2006). Immobilization of Mucor javanicus lipase on effectively functionalized silica nanoparticles. J Mol Catal B Enzym, 39, 62-8.   DOI   ScienceOn
39 Kreuter J (2007). Nanoparticles -a historical perspective. Int J Pharm, 331, 1-10.   DOI   ScienceOn
40 Kumar SSD, Surianarayanan M, Vijayaraghavan R, Mandal AB, MacFarlane D (2014). Curcumin loaded poly (2-hydroxyethyl methacrylate) nanoparticles from gelled ionic liquid. In vitro cytotoxicity and anti-cancer activity in SKOV-3 cells. Eur J Pharm Sci, 51, 34-44.   DOI   ScienceOn
41 Lloyd AW, Faragher RG, Denyer SP (2001). Ocular biomaterials and implants. Biomaterials, 22, 769-85.   DOI   ScienceOn
42 Li J-L, Wang L, Liu X-Y, et al (2009). In vitro cancer cell imaging and therapy using transferrin-conjugated gold nanoparticles. Cancer Letters, 274, 319-26.   DOI   ScienceOn
43 Li Y, Zhang S, Geng J-X, Hu X-Y (2013). Curcumin inhibits human non-small cell lung cancer A549 cell proliferation through regulation of Bcl-2/Bax and cytochrome C. Asian Pac J Cancer Prev, 14, 4599-602.   과학기술학회마을   DOI   ScienceOn
44 Lin C-H, Cheng S-H, Liao W-N, et al (2012). Mesoporous silica nanoparticles for the improved anticancer efficacy of cis-platin. Int J Pharm, 429, 138-47.   DOI   ScienceOn
45 Hussain HI, Yi Z, Rookes JE, Kong LX, Cahill DM (2013). Mesoporous silica nanoparticles as a biomolecule delivery vehicle in plants. J Nanopart Res, 15, 1-15.
46 He J, Wang X-M, Spector M, Cui F-Z (2012). Scaffolds for central nervous system tissue engineering. Front Mater Sci, 6, 1-25.   DOI
47 Hussein AS,Abdullah N (2013). In vitro degradation of poly (D, L-lactide-co-glycolide) nanoparticles loaded with linamarin. IET Nanobiotechnol, 7, 33-41.   DOI   ScienceOn
48 Jain AK, Thanki K, Jain S (2013). Co-encapsulation of tamoxifen and quercetin in polymeric nanoparticles: implications on oral Bioavailability, antitumor efficacy, and drug-Induced toxicity. Molecular Pharmaceutics, 10, 3459-74.   DOI   ScienceOn
49 Jantas R,Herczynska L (2010). Preparation and characterization of the poly (2-hydroxyethyl methacrylate)-salicylic acid conjugate. Polym Bull, 64, 459-69.   DOI
50 Jiang W-j, Wu C-l, Zhang R-r (2012). General assembly of organic molecules in core-shell mesoporous silica nanoparticles. Materials Letters, 77, 100-2.   DOI   ScienceOn
51 Karthikeyan S, Rajendra Prasad N, Ganamani A, Balamurugan E (2013). Anticancer activity of resveratrol-loaded gelatin nanoparticles on NCI-H460 non-small cell lung cancer cells. Biomedicine & Preventive Nutrition, 3, 64-73.   DOI   ScienceOn
52 Gao X, Wang B, Wei X, et al (2012). Anticancer effect and mechanism of polymer micelle-encapsulated quercetin on ovarian cancer. Nanoscale, 4, 7021-30.   DOI   ScienceOn
53 Figueiro F, Bernardi A, Frozza RL, et al (2013). Resveratrol-loaded lipid-core nanocapsules treatment reduces in vitro and in vivo glioma growth. J Biomed Nanotechnol, 9, 516-26.   DOI
54 Fuertes AB, Valle-Vigon P, Sevilla M (2010). Synthesis of colloidal silica nanoparticles of a tunable mesopore size and their application to the adsorption of biomolecules. J Colloid Interface Sci, 349, 173-80.   DOI   ScienceOn
55 Gangwar RK, Tomar GB, Dhumale VA, et al (2013). Curcumin Conjugated Silica Nanoparticles for Improving Bioavailability and Its Anticancer Applications. J Agric Food Chem, 61, 9632-7.
56 Gao X, Zhang X, Zhang X, et al (2011). Amphiphilic polylactic acid-hyperbranched polyglycerol nanoparticles as a controlled release system for poorly water-soluble drugs: physicochemical characterization. J Pharm Pharmacol, 63, 757-64.   DOI   ScienceOn
57 Giteau A, Venier-Julienne M-C, Aubert-Pouessel A, Benoit J-P (2008). How to achieve sustained and complete protein release from PLGA-based microparticles? Int J Pharm, 350, 14-26.   DOI   ScienceOn
58 Guzman-Villanueva D, El-Sherbiny IM, Herrera-Ruiz D, Smyth HD (2013). Design and In vitro evaluation of a new nano- microparticulate system for enhanced aqueous-phase solubility of curcumin. Biomed Res Int, 2013, 724763.
59 Gratton SE, Ropp PA, Pohlhaus PD, et al (2008). The effect of particle design on cellular internalization pathways. Proceedings of the National Academy of Sciences, 105, 11613-8.   DOI   ScienceOn
60 Guri A, Gulseren I, Corredig M (2013). Utilization of solid lipid nanoparticles for enhanced delivery of curcumin in cocultures of HT29-MTX and Caco-2 cells. Food Funct, 4, 1410-9.   DOI
61 Dilnawaz F,Sahoo SK (2013). Enhanced accumulation of curcumin and temozolomide loaded magnetic nanoparticles executes profound cytotoxic effect in glioblastoma spheroid model. Eur J Pharm Biopharm, 85, 452-62.   DOI   ScienceOn
62 Cruz LJ, Tacken PJ, Fokkink R, et al (2010). Targeted PLGA nano-but not microparticles specifically deliver antigen to human dendritic cells via DC-SIGN in vitro. J Control Release, 144, 118-26.   DOI   ScienceOn
63 Dai X, Yin H, Sun L, et al (2013). Potential therapeutic efficacy of curcumin in liver cancer. Asian Pac J Cancer Prev, 14, 3855-9.   과학기술학회마을   DOI   ScienceOn
64 Danhier F, Ansorena E, Silva JM, et al (2012). PLGA-based nanoparticles: An overview of biomedical applications. J Control Release, 161, 505-22.   DOI   ScienceOn
65 Dobic SN, Filipovic JM, Tomic SL (2012). Synthesis and characterization of poly (2-hydroxyethyl methacrylate/itaconic acid/poly (ethylene glycol) dimethacrylate) hydrogels. Chemical Engineering Journal, 179, 372-80.   DOI   ScienceOn
66 Feng R, Song Z, Zhai G (2012). Preparation and in vivo pharmacokinetics of curcumin-loaded PCL-PEG-PCL triblock copolymeric nanoparticles. Int J Nanomedicine, 7, 4089-98.
67 Dora CL, Silva L, Putaux J-L, et al (2012). Poly (ethylene glycol) hydroxystearate-based nanosized emulsions: effect of surfactant concentration on their formation and ability to solubilize quercetin. J Biomed Nanotechnol, 8, 202-10.   DOI
68 Fan G-H, Wang Z-M, Yang, et al (2014). Resveratrol inhibits oesophageal adenocarcinoma cell proliferation via AMP-activated protein kinase signaling. Asian Pac J Cancer Prev, 15, 677-82.   과학기술학회마을   DOI   ScienceOn
69 Fang J-Y, Li Z-H, Li Q, et al (2012). Resveratrol affects protein kinase C activity and promotes apoptosis in human colon carcinoma cells. Asian Pac J Cancer Prev, 13, 6017-22.   과학기술학회마을   DOI   ScienceOn
70 Ahmed SR, Dong J, Yui M, et al (2013). Quantum dots incorporated magnetic nanoparticles for imaging colon carcinoma cells. J Nanobiotechnol, 11, 28.   DOI   ScienceOn
71 Bu L, Gan L-C, Guo X-Q, et al (2013). Trans-resveratrol loaded chitosan nanoparticles modified with biotin and avidin to target hepatic carcinoma. Int J Pharm, 452, 355-62.   DOI   ScienceOn
72 Chang P-Y, Peng S-F, Lee C-Y, et al (2013). Curcumin-loaded nanoparticles induce apoptotic cell death through regulation of the function of MDR1 and reactive oxygen species in cisplatin-resistant CAR human oral cancer cells. Int J Oncol, 43, 1141-50.   DOI
73 Alexis F, Pridgen EM, Langer R, Farokhzad OC (2010). Nanoparticle technologies for cancer therapy. Journal, 55-86.
74 Wu C-F, Yang J-Y, Wang F, Wang X-X (2013a). Resveratrol: botanical origin, pharmacological activity and applications. Chin J Nat Med, 11, 1-15.
75 Chen J, Dai W, He Z, et al (2013). Fabrication and evaluation of curcumin-loaded nanoparticles based on solid lipid as a new type of colloidal drug delivery system. Indian J Pharmaceutical Sci, 75, 178.
76 Chouhan R,Bajpai A (2009). An in vitro release study of 5-fluoro-uracil (5-FU) from swellable poly-(2-hydroxyethyl methacrylate)(PHEMA) nanoparticles. J Mater Sci Mater Med, 20, 1103-14.   DOI
77 Coelho JF, Ferreira PC, Alves P, et al (2010). Drug delivery systems: Advanced technologies potentially applicable in personalized treatments. EPMA J, 1, 164-209.   DOI   ScienceOn
78 Yin H-T, Tian Q-Z, Guan L, et al (2013a). In vitro and in vivo evaluation of the antitumor efficiency of resveratrol against lung cancer. Asian Pac J Cancer Prev, 14, 1703-6.   DOI   ScienceOn
79 Wang G, Wang JJ, Yang GY, et al (2012). Effects of quercetin nanoliposomes on C6 glioma cells through induction of type III programmed cell death. Int J Nanomedicine, 7, 271-80.   DOI   ScienceOn
80 Wu S, Sun K, Wang X, et al (2013b). Protonation of epigallocatechin-3-gallate (EGCG) results in massive aggregation and reduced oral bioavailability of EGCG-dispersed selenium nanoparticles. J Agric Food Chem, 61, 7268-75.   DOI   ScienceOn
81 Yang M, Wang G, Yang Z (2008). Synthesis of hollow spheres with mesoporous silica nanoparticles shell. Materials Chemistry and Physics, 111, 5-8.   DOI   ScienceOn
82 Yin H-T, Zhang D, Wu X, Huang X-E, Chen G (2013b). In vivo evaluation of curcumin-loaded nanoparticles in a A549 xenograft mice model. Asian Pac J Cancer Prev, 14, 409-12.   DOI   ScienceOn
83 Zhu J, Marchant RE (2011). Design properties of hydrogel tissue-engineering scaffolds. Expert Rev Med Devices, 8, 607-26.   DOI
84 Hu B, Ting Y, Yang X, et al (2012). Nanochemoprevention by encapsulation of (-)-epigallocatechin-3-gallate with bioactive peptides/chitosan nanoparticles for enhancement of its bioavailability. Chem Commun (Camb), 48, 2421-3.   DOI   ScienceOn
85 Harakeh S, Diab-Assaf M, Azar R, et al (2014). Epigallocatechin-3-gallate Inhibits Tax-dependent Activation of Nuclear Factor Kappa B and of Matrix Metalloproteinase 9 in Human T-cell Lymphotropic Virus-1 Positive Leukemia Cells. Asian Pac J Cancer Prev: APJCP, 15, 1219.   과학기술학회마을   DOI   ScienceOn
86 Campolongo MJ,Luo D (2009). Drug delivery: old polymer learns new tracts. Nature materials, 8, 447-8.   DOI   ScienceOn
87 Wang G, Wang J, Chen X, et al (2013). The JAK2/STAT3 and mitochondrial pathways are essential for quercetin nanoliposome-induced C6 glioma cell death. Cell Death Dis, 4, 746.   DOI   ScienceOn
88 Park SK, Kim KD, Kim HT (2002). Preparation of silica nanoparticles: determination of the optimal synthesis conditions for small and uniform particles. Colloids Surf A Physicochem Eng Asp, 197, 7-17.   DOI   ScienceOn