Browse > Article
http://dx.doi.org/10.7314/APJCP.2014.15.21.9341

Anticancer Activity of Acanthopanax trifoliatus (L) Merr Extracts is Associated with Inhibition of NF-κB Activity and Decreased Erk1/2 and Akt Phosphorylation  

Wang, Hua-Qian (Allan H Conney Laboratory for Anticancer Research, School of Chemical Engineering and Light Industry, Guangdong University of Technology)
Li, Dong-Li (Allan H Conney Laboratory for Anticancer Research, School of Chemical Engineering and Light Industry, Guangdong University of Technology)
Lu, Yu-Jing (Allan H Conney Laboratory for Anticancer Research, School of Chemical Engineering and Light Industry, Guangdong University of Technology)
Cui, Xiao-Xing (Susan Lehman Cullman Laboratory for Cancer Research, Department of Chemical Biology, Ernest Mario School of Pharmacy)
Zhou, Xiao-Fen (Allan H Conney Laboratory for Anticancer Research, School of Chemical Engineering and Light Industry, Guangdong University of Technology)
Lin, Wei-Ping (Allan H Conney Laboratory for Anticancer Research, School of Chemical Engineering and Light Industry, Guangdong University of Technology)
Conney, Allan H. (Allan H Conney Laboratory for Anticancer Research, School of Chemical Engineering and Light Industry, Guangdong University of Technology)
Zhang, Kun (Allan H Conney Laboratory for Anticancer Research, School of Chemical Engineering and Light Industry, Guangdong University of Technology)
Du, Zhi-Yun (Allan H Conney Laboratory for Anticancer Research, School of Chemical Engineering and Light Industry, Guangdong University of Technology)
Zheng, Xi (Allan H Conney Laboratory for Anticancer Research, School of Chemical Engineering and Light Industry, Guangdong University of Technology)
Publication Information
Asian Pacific Journal of Cancer Prevention / v.15, no.21, 2014 , pp. 9341-9346 More about this Journal
Abstract
Acanthopanax trifoliatus (L) Merr (AT) is commonly used as an herbal medicine and edible plant in some areas of China and other Asian countries. AT is thought to have anticancer effects, but potential mechanisms remain unknown. To assess the anticancer properties of AT, we exposed prostate cancer cells to AT extracts and assessed cell proliferation and signaling pathways. An ethanol extract of AT was suspended in water followed by sequential extraction with petroleum ether, ethyl acetate and n-butanol. PC-3 cells were treated with different concentrations of each extract and cell viability was determined by the MTT and trypan blue exclusion assays. The ethyl acetate extract of the ethanol extract had a stronger inhibitory effect on growth and a stronger stimulatory effect on apoptosis than any of the other extracts. Mechanistic studies demonstrated that the ethyl acetate extract suppressed the transcriptional activity of NF-${\kappa}B$, increased the level of caspase-3, and decreased the levels of phospho-Erk1/2 and phospho-Akt. This is the first report on the anticancer activity of AT in cultured human prostate cancer cells. The results suggest that AT can provide a plant-based medicine for the treatment or prevention of prostate cancer.
Keywords
Plant extract; prostate cancer; apoptosis; NF-${\kappa}B$; HPLC;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Kook SH, Jang YS, Lee JC (2011). Involvement of JNK-AP-1 and ERK-NF-kappaB signaling in tension-stimulated expression of type I collagen and MMP-1 in human periodontal ligament fibroblasts. J Appl Physiol, 111, 1575-83.   DOI
2 Lessard L, Mes-Masson AM, Lamarre L, et al (2003). NF-kappa B nuclear localization and its prognostic significance in prostate cancer. BJU Int, 91, 417-20.   DOI
3 Liu XH, Kirschenbaum A, Lu M, et al (2002). Prostaglandin E(2) stimulates prostatic intraepithelial neoplasia cell growth through activation of the interleukin-6/GP130/STAT-3 signaling pathway. Biochem Biophys Res Commun, 290, 249-55.   DOI
4 Loblaw DA, Virgo KS, Nam R, et al (2007). Initial hormonal management of androgen-sensitive metastatic, recurrent, or progressive prostate cancer: 2006 update of an American Society of Clinical Oncology practice guideline. J Clin Oncol, 25, 1596-605.   DOI   ScienceOn
5 Loi DT (2000). Glossary of vietnamese medical plants. 379.
6 Maeda S, Omata M (2008). Inflammation and cancer: role of nuclear factor-kappaB activation. Cancer Sci, 99, 836-42.   DOI   ScienceOn
7 Meiyanto E, Hermawan A, Anindyajati (2012). Natural products for cancer-targeted therapy: citrus flavonoids as potent chemopreventive agents. Asian Pac J Cancer Prev, 13, 427-36.   과학기술학회마을   DOI   ScienceOn
8 McCubrey JA, Steelman LS, Chappell WH, et al (2007). Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochim Biophys Acta, 1773, 1263-84.   DOI   ScienceOn
9 Neri B, Molinara E, Pantaleo P, et al (2009). Weekly administration of docetaxel and epirubicin as first-line treatment for hormone-refractory prostate carcinoma. Oncol Res, 17, 565-70.   DOI
10 Paule B, Terry S, Kheuang L, et al (2007). The NF-kappaB/IL-6 pathway in metastatic androgen-independent prostate cancer: new therapeutic approaches? World J Urol, 25, 477-89.   DOI
11 Pilat MJ, Kamradt JM, Pienta KJ (1998). Hormone resistance in prostate cancer. Cancer Metastasis Rev, 17, 373-81.   DOI
12 Raman M, Chen W, Cobb MH (2007). Differential regulation and properties of MAPKs. Oncogene, 26, 3100-12.   DOI   ScienceOn
13 Ross JS, Kallakury BV, Sheehan CE, et al (2004). Expression of nuclear factor-kappa B and I kappa B alpha proteins in prostatic adenocarcinomas: correlation of nuclear factor-kappa B immunoreactivity with disease recurrence. Clin Cancer Res, 10, 2466-72.   DOI
14 Sambantham S, Radha M, Paramasivam A, et al (2013). Molecular mechanism underlying hesperetin-induced apoptosis by in silico analysis and in prostate cancer PC-3 cells. Asian Pac J Cancer Prev, 14, 4347-52.   과학기술학회마을   DOI
15 Sarker D, Reid AH, Yap TA, et al (2009). Targeting the PI3K/AKT pathway for the treatment of prostate cancer. Clin Cancer Res, 15, 4799-805.   DOI   ScienceOn
16 Saunders FR, Wallace HM (2010). On the natural chemoprevention of cancer. Plant Physiol Biochem, 48, 621-6.   DOI
17 Schroder FH (2008). Progress in understanding androgen-independent prostate cancer (AIPC): a review of potential endocrine-mediated mechanisms. Eur Urol, 53, 1129-37.   DOI
18 So A, Gleave M, Hurtado-Col A, et al (2005). Mechanisms of the development of androgen independence in prostate cancer. World J Urol, 23, 1-9.   DOI   ScienceOn
19 Shukla S, MacLennan GT, Fu P, et al (2004). Nuclear factor-kappaB/p65 (Rel A) is constitutively activated in human prostate adenocarcinoma and correlates with disease progression. Neoplasia, 6, 390-400.   DOI   ScienceOn
20 Siegel R, Naishadham D, Jemal A (2012). Cancer statistics, 2012. CA Cancer J Clin, 62, 10-29.   DOI   ScienceOn
21 Uzgare AR, Isaacs JT (2005). Prostate cancer: potential targets of anti-proliferative and apoptotic signaling pathways. Int J Biochem Cell Biol, 37, 707-14.   DOI
22 Wegiel B, Evans S, Hellsten R, et al (2010). Molecular pathways in the progression of hormone-independent and metastatic prostate cancer. Curr Cancer Drug Targets, 10, 392-401.   DOI
23 Wei X, Du ZY, Cui XX, et al (2012). Effects of cyclohexanone analogues of curcumin on growth, apoptosis and NF-kappaB activity in PC-3 human prostate cancer cells. Oncol Lett, 4, 279-84.
24 Ye Y, Hou R, Chen J, et al (2012). Formononetin-induced apoptosis of human prostate cancer cells through ERK1/2 mitogen-activated protein kinase inactivation. Horm Metab Res, 44, 263-7.   DOI   ScienceOn
25 Zheng X, Chang RL, Cui XX, et al (2008). Inhibition of NF-kappaB by (E)3-[ (4-methylphenyl)-sulfonyl]-2-propenenitrile (BAY11-7082; BAY) is associated with enhanced 12-O-tetradecanoylphorbol-13-acetate-induced growth suppression and apoptosis in human prostate cancer PC-3 cells. Int J Oncol, 32, 257-64.
26 Chi KN, Bjartell A, Dearnaley D, et al (2009). Castration-resistant prostate cancer: from new pathophysiology to new treatment targets. Eur Urol, 56, 594-605.   DOI
27 Zheng X, Chang RL, Cui XX, et al (2004). Inhibitory effect of 12-O-tetradecanoylphorbol-13-acetate alone or in combination with all-trans-retinoic acid on the growth of LNCaP prostate tumors in immunodeficient mice. Cancer Res, 64, 1811-20.   DOI
28 Antonarakis ES, Carducci MA, Eisenberger MA (2010). Novel targeted therapeutics for metastatic castration-resistant prostate cancer. Cancer Lett, 291, 1-13.   DOI
29 Baade PD, Youlden DR, Krnjacki LJ (2009). International epidemiology of prostate cancer: geographical distribution and secular trends. Mol Nutr Food Res, 53, 171-84.   DOI   ScienceOn
30 Bhargavan B, Fatma N, Chhunchha B, et al (2012). LEDGF gene silencing impairs the tumorigenicity of prostate cancer DU145 cells by abating the expression of Hsp27 and activation of the Akt/ERK signaling pathway. Cell Death Dis, 3, 316.   DOI
31 Chi VV (1997). Vietnamese Medical Plant Dictionary. 622.
32 Cragg GM, Newman DJ (2005). Plants as a source of anti-cancer agents. J Ethnopharmacol, 100, 72-9.   DOI   ScienceOn
33 Hanahan D, Weinberg RA (2011). Hallmarks of cancer: the next generation. Cell, 144, 646-74.   DOI   ScienceOn
34 De Marzo AM, Platz EA, Sutcliffe S, et al (2007). Inflammation in prostate carcinogenesis. Nat Rev Cancer, 7, 256-69.   DOI   ScienceOn
35 Gioeli D, Mandell JW, Petroni GR, et al (1999). Activation of mitogen-activated protein kinase associated with prostate cancer progression. Cancer Res, 59, 279-84.
36 Gomella LG, Johannes J, Trabulsi EJ (2009). Current prostate cancer treatments: effect on quality of life. Urology, 73, 28-35.   DOI
37 Hansson A, Marin YE, Suh J, et al (2005). Enhancement of TPA-induced growth inhibition and apoptosis in myeloid leukemia cells by BAY 11-7082, an NF-kappaB inhibitor. Int J Oncol, 27, 941-8.
38 Hsu JC (1996). Multiple comparisons: theory and methods.
39 Ianni M, Porcellini E, Carbone I, et al (2013). Genetic factors regulating inflammation and DNA methylation associated with prostate cancer. Prostate Cancer Prostatic Dis, 16, 56-61.   DOI
40 Junttila MR, Li SP, Westermarck J (2008). Phosphatase-mediated crosstalk between MAPK signaling pathways in the regulation of cell survival. FASEB J, 22, 954-65.
41 Karin M (2009). NF-kappaB as a critical link between inflammation and cancer. Cold Spring Harb Perspect Biol, 1, 000141.   DOI
42 Kaur P, Shukla S, Gupta S (2008). Plant flavonoid apigenin inactivates Akt to trigger apoptosis in human prostate cancer: an in vitro and in vivo study. Carcinogenesis, 29, 2210-7.   DOI