Browse > Article
http://dx.doi.org/10.7314/APJCP.2013.14.4.2173

Power and Promise of Ubiquitin Carboxyl-terminal Hydrolase 37 as a Target of Cancer Therapy  

Chen, Yan-Jie (Department of Gastroenterology, Zhongshan Hospital of Fudan University)
Ma, Yu-Shui (Department of Gastroenterology, Zhongshan Hospital of Fudan University)
Fang, Ying (Department of Gastroenterology, Zhongshan Hospital of Fudan University)
Wang, Yi (Department of Gastroenterology, Zhongshan Hospital of Fudan University)
Fu, Da (Department of Gastroenterology, Zhongshan Hospital of Fudan University)
Shen, Xi-Zhong (Department of Gastroenterology, Zhongshan Hospital of Fudan University)
Publication Information
Asian Pacific Journal of Cancer Prevention / v.14, no.4, 2013 , pp. 2173-2179 More about this Journal
Abstract
Ubiquitin carboxyl-terminal hydrolase 37 (UCH37, also called UCHL5), a member of the deubiquitinating enzymes, can suppress protein degradation through disassembling polyubiquitin from the distal subunit of the chain. It has been proved that UCH37 can be activated by proteasome ubiqutin chain receptor Rpn13 and incorporation into the 19S complex. UCH37, which has been reported to assist in the mental development of mice, may play an important role in oncogenesis, tumor invasion and migration. Further studies will allow a better understanding of roles in cell physiology and pathology, embryonic development and tumor formation, hopefully providing support for the idea that UCH37 may constitute a new interesting target for the development of anticancer drugs.
Keywords
UCH37; deubiquitination; proteasome; protein interaction; tumor therapy target;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Husnjak K, Elsasser S, Zhang N, et al (2008). Proteasome subunit Rpn13 is a novel ubiquitin receptor. Nature, 453, 481-8.   DOI   ScienceOn
2 Jacobson AD, Zhang NY, Xu P, et al (2009). The lysine 48 and lysine 63 ubiquitin conjugates are processed differently by the 26 s proteasome. J Biol Chem, 284, 35485-94.   DOI   ScienceOn
3 Kapuria V, Peterson LF, Fang D, et al (2010). Deubiquitinase inhibition by small-molecule WP1130 triggers aggresome formation and tumor cell apoptosis. Cancer Res, 70, 9265-76.   DOI
4 Koulich E, Li X, DeMartino GN (2008). Relative structural and functional roles of multiple deubiquitylating proteins associated with mammalian 26S proteasome. Mol Biol Cell, 19, 1072-82.
5 Lam YA, DeMartino GN, Pickart CM, Cohen RE (1997a). Specificity of the ubiquitin isopeptidase in the PA700 regulatory complex of 26 S proteasomes. J Biol Chem, 272, 28438-46.   DOI   ScienceOn
6 Lam YA, Xu W, DeMartino GN, Cohen RE (1997b). Editing of ubiquitin conjugates by an isopeptidase in the 26S proteasome. Nature, 385, 737-40.   DOI   ScienceOn
7 Larkin MA, Blackshields G, Brown NP, et al (2007). Clustal W and Clustal X version 2.0. Bioinformatics, 23, 2947-8.   DOI   ScienceOn
8 Lee BH, Lee MJ, Park S, et al (2010). Enhancement of proteasome activity by a small-molecule inhibitor of USP14. Nature, 467, 179-84.   DOI   ScienceOn
9 Lee MJ, Lee BH, Hanna J, King RW, Finley D (2011). Trimming of ubiquitin chains by proteasome-associated deubiquitinating enzymes. Mol Cell Proteomics, 10, R110003871   DOI
10 Li T, Duan W, Yang H, et al (2001). Identification of two proteins, S14 and UIP1, that interact with UCH37. FEBS Lett, 488, 201-5.   DOI   ScienceOn
11 Schreiner P, Chen X, Husnjak K, et al (2008). Ubiquitin docking at the proteasome through a novel pleckstrin-homology domain interaction. Nature, 453, 548-52.   DOI   ScienceOn
12 Stone M, Hartmann-Petersen R, Seeger M, et al (2004). Uch2/ Uch37 is the major deubiquitinating enzyme associated with the 26S proteasome in fission yeast. J Mol Biol, 344, 697-706.   DOI   ScienceOn
13 Sulewska A, Niklinska W, Kozlowski M, et al (2007). DNA methylation in states of cell physiology and pathology. Folia Histochem Cytobiol, 45, 149-58.
14 The PyMOL Molecular Graphics System: [http://www.pymol.org/citing], Version 1.3, http://www.pymol.org/export.
15 Verma R, Aravind L, Oania R, et al (2002). Role of Rpn11 metalloprotease in deubiquitination and degradation by the 26S proteasome. Science, 298, 611-5.   DOI   ScienceOn
16 Wang X (2008). miRDB: a microRNA target prediction and functional annotation database with a wiki interface. RNA, 14, 1012-7.   DOI   ScienceOn
17 Wang X, El Naqa IM (2008). Prediction of both conserved and nonconserved microRNA targets in animals. Bioinformatics, 24, 325-32.   DOI   ScienceOn
18 Wicks SJ, Grocott T, Haros K, et al (2006). Reversible ubiquitination regulates the Smad/TGF-beta signalling pathway. Biochem Soc Trans, 34, 761-3.   DOI   ScienceOn
19 Wicks SJ, Haros K, Maillard M, et al (2005). The deubiquitinating enzyme UCH37 interacts with Smads and regulates TGFbeta signalling. Oncogene, 24, 8080-4.   DOI   ScienceOn
20 Wilkinson KD (1997). Regulation of ubiquitin-dependent processes by deubiquitinating enzymes. FASEB J, 11, 1245-56.
21 Wilkinson KD (2002). Cell biology: unchaining the condemned. Nature, 419, 351-3.   DOI   ScienceOn
22 Al-Shami A, Jhaver KG, Vogel P, et al (2010). Regulators of the proteasome pathway, Uch37 and Rpn13, play distinct roles in mouse development. PLoS One, 5, e13654.   DOI   ScienceOn
23 Baek D, Villen J, Shin C, et al (2008). The impact of microRNAs on protein output. Nature, 455, 64-71.   DOI   ScienceOn
24 Betel D, Wilson M, Gabow A, Marks DS, Sander C (2008). The microRNA.org resource: targets and expression. Nucleic Acids Res, 36, D149-53.
25 Blom N, Gammeltoft S, Brunak S (1999). Sequence and structurebased prediction of eukaryotic protein phosphorylation sites. J Mol Biol, 294, 1351-62.   DOI   ScienceOn
26 Burgie SE, Bingman CA, Soni AB, Phillips GN, Jr. (2011). Structural characterization of human Uch37. Proteins.
27 Chen Z, Niu X, Li Z, et al (2011). Effect of ubiquitin carboxyterminal hydrolase 37 on apoptotic in A549 cells. Cell Biochem Funct, 29, 142-8.   DOI   ScienceOn
28 Cai Y, Jin J, Yao T, et al (2007). YY1 functions with INO80 to activate transcription. Nat Struct Mol Biol, 14, 872-4.   DOI   ScienceOn
29 Chen X, Lee BH, Finley D, Walters KJ (2010). Structure of proteasome ubiquitin receptor hRpn13 and its activation by the scaffolding protein hRpn2. Mol Cell, 38, 404-15.   DOI   ScienceOn
30 Chen Y, Fu D, Xi J, et al (2012). Expression and Clinical Significance of UCH37 in Human Esophageal Squamous Cell Carcinoma. Dig Dis Sci, 57, 2310-7.   DOI   ScienceOn
31 Chung CH, Baek SH (1999). Deubiquitinating enzymes: their diversity and emerging roles. Biochem Biophys Res Commun, 266, 633-40.   DOI   ScienceOn
32 Cutts AJ, Soond SM, Powell S, Chantry A (2011). Early phase TGFbeta receptor signalling dynamics stabilised by the deubiquitinase UCH37 promotes cell migratory responses. Int J Biochem Cell Biol, 43, 604-12.   DOI   ScienceOn
33 D'Arcy P, Brnjic S, Olofsson MH, et al (2011). Inhibition of proteasome deubiquitinating activity as a new cancer therapy. Nat Med, 17, 1636-40.   DOI   ScienceOn
34 Deveraux Q, Ustrell V, Pickart C, Rechsteiner M (1994). A 26 S protease subunit that binds ubiquitin conjugates. J Biol Chem, 269, 7059-61.
35 Fang Y, Fu D, Shen XZ (2010). The potential role of ubiquitin c-terminal hydrolases in oncogenesis. Biochim Biophys Acta, 1806, 1-6.
36 Goldberg AL (2003). Protein degradation and protection against misfolded or damaged proteins. Nature, 426, 895-9.   DOI   ScienceOn
37 Glickman MH, Ciechanover A (2002). The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev, 82, 373-428.
38 Fang Y, Fu D, Tang W, et al (2013). Ubiquitin C-terminal Hydrolase 37, a novel predictor for hepatocellular carcinoma recurrence, promotes cell migration and invasion via interacting and deubiquitinating PRP19. Biochim Biophys Acta, 1833, 559-72.   DOI   ScienceOn
39 Fang Y, Mu J, Ma Y, et al (2012). The interaction between ubiquitin C-terminal hydrolase 37 and glucose-regulated protein 78 in hepatocellular carcinoma. Mol Cell Biochem, 359, 59-66.   DOI   ScienceOn
40 Friedman RC, Farh KK, Burge CB, Bartel DP (2009). Most mammalian mRNAs are conserved targets of microRNAs. Genome Res, 19, 92-105.
41 Guterman A, Glickman MH (2004). Deubiquitinating enzymes are IN/(trinsic to proteasome function). Curr Protein Pept Sci, 5, 201-11.   DOI   ScienceOn
42 Hamazaki J, Iemura S, Natsume T, et al (2006). A novel proteasome interacting protein recruits the deubiquitinating enzyme UCH37 to 26S proteasomes. EMBO J, 25, 4524-36.   DOI   ScienceOn
43 Hanna J, Hathaway NA, Tone Y, et al (2006). Deubiquitinating enzyme Ubp6 functions noncatalytically to delay proteasomal degradation. Cell, 127, 99-111.   DOI   ScienceOn
44 Hershko A and Ciechanover A (1998). The ubiquitin system. Annu Rev Biochem, 67, 425-79.   DOI   ScienceOn
45 Hirohashi Y, Wang Q, Liu Q, et al (2006). p78/MCRS1 forms a complex with centrosomal protein Nde1 and is essential for cell viability. Oncogene, 25, 4937-46.   DOI   ScienceOn
46 Holzl H, Kapelari B, Kellermann J, et al (2000). The regulatory complex of Drosophila melanogaster 26S proteasomes. Subunit composition and localization of a deubiquitylating enzyme. J Cell Biol, 150, 119-30.   DOI   ScienceOn
47 Peth A, Besche HC, Goldberg AL (2009). Ubiquitinated proteins activate the proteasome by binding to Usp14/Ubp6, which causes 20S gate opening. Mol Cell, 36, 794-804.   DOI   ScienceOn
48 Liu CH, Goldberg AL, Qiu XB (2007). New insights into the role of the ubiquitin-proteasome pathway in the regulation of apoptosis. Chang Gung Med J, 30, 469-79.
49 Mazumdar T, Gorgun FM, Sha Y, et al (2010). Regulation of NF-kappaB activity and inducible nitric oxide synthase by regulatory particle non-ATPase subunit 13 (Rpn13). Proc Natl Acad Sci U S A, 107, 13854-9.   DOI   ScienceOn
50 Nishio K, Kim SW, Kawai K, et al (2009). Crystal structure of the de-ubiquitinating enzyme UCH37 (human UCH-L5) catalytic domain. Biochem Biophys Res Commun, 390, 855-60.   DOI   ScienceOn
51 Peth A, Kukushkin N, Bosse M, Goldberg AL (2013). Ubiquitinated proteins activate the proteasomal ATPases by binding to Usp14 or Uch37. J Biol Chem, 288, 7781-90.   DOI   ScienceOn
52 Pickart CM (2001). Mechanisms underlying ubiquitination. Annu Rev Biochem, 70, 503-33.   DOI   ScienceOn
53 Qiu XB, Ouyang SY, Li CJ, et al (2006). hRpn13/ADRM1/ GP110 is a novel proteasome subunit that binds the deubiquitinating enzyme, UCH37. EMBO J, 25, 5742-53.   DOI   ScienceOn
54 Reese MG (2001). Application of a time-delay neural network to promoter annotation in the Drosophila melanogaster genome. Comput Chem, 26, 51-6.   DOI   ScienceOn
55 Rolen U, Kobzeva V, Gasparjan N, et al (2006). Activity profiling of deubiquitinating enzymes in cervical carcinoma biopsies and cell lines. Mol Carcinog, 45, 260-9.   DOI   ScienceOn
56 Saeki Y, Tanaka K (2008). Cell biology: two hands for degradation. Nature, 453, 460-1.   DOI   ScienceOn
57 Yao T, Song L, Xu W, et al (2006). Proteasome recruitment and activation of the Uch37 deubiquitinating enzyme by Adrm1. Nat Cell Biol, 8, 994-1002.   DOI   ScienceOn
58 Wong YH, Lee TY, Liang HK, et al (2007). KinasePhos 2.0: a web server for identifying protein kinase-specific phosphorylation sites based on sequences and coupling patterns. Nucleic Acids Res, 35, W588-94.   DOI
59 Yao T, Cohen RE (2002). A cryptic protease couples deubiquitination and degradation by the proteasome. Nature, 419, 403-7.   DOI   ScienceOn
60 Yao T, Song L, Jin J, et al (2008). Distinct modes of regulation of the Uch37 deubiquitinating enzyme in the proteasome and in the Ino80 chromatin-remodeling complex. Mol Cell, 31, 909-17.   DOI   ScienceOn
61 Zediak VP, Berger SL (2008). Hit and run: transient deubiquitylase activity in a chromatin-remodeling complex. Mol Cell, 31, 773-4.   DOI   ScienceOn
62 Zhou ZR, Zhang YH, Liu S, Song AX, Hu HY (2011). Length of the active-site crossover loop defines the substrate specificity of ubiquitin C-terminal hydrolases for ubiquitin chains. Biochem J, 441, 143-9.