Browse > Article
http://dx.doi.org/10.7314/APJCP.2013.14.1.341

Polymorphisms in TP53 (rs1042522), p16 (rs11515 and rs3088440) and NQO1 (rs1800566) Genes in Thai Cervical Cancer Patients with HPV 16 Infection  

Chansaenroj, Jira (Center of Excellence in Clinical Virology, Department of Paediatrics, Faculty of Medicine, Chulalongkorn University)
Theamboonlers, Apiradee (Center of Excellence in Clinical Virology, Department of Paediatrics, Faculty of Medicine, Chulalongkorn University)
Junyangdikul, Pairoj (Department of Pathology, Samitivej Srinakharin Hospital)
Swangvaree, Sukumarn (Department of Gynecologic Oncology, National Cancer Institute)
Karalak, Anant (Department of Pathology, National Cancer Institute)
Chinchai, Teeraporn (Department of Microbiology, Faculty of Medicine, Srinakharinwirot University)
Poovorawan, Yong (Center of Excellence in Clinical Virology, Department of Paediatrics, Faculty of Medicine, Chulalongkorn University)
Publication Information
Asian Pacific Journal of Cancer Prevention / v.14, no.1, 2013 , pp. 341-346 More about this Journal
Abstract
The risk of cervical cancer development in women infected with HPV varies in relation to the individual host's genetic makeup. Many studies on polymorphisms as genetic factors have been aimed at analyzing associations with cervical cancer. In this study, single nucleotide polymorphisms (SNPs) in 3 genes were investigated in relation to cervical cancer progression in HPV16 infected women with lesions. Two thousand cervical specimens were typed by PCR sequencing methods for TP53 (rs1042522), p16 (rs11515 and rs3088440) and NQO1 (rs1800566). Ninety two HPV16 positive cases and thirty two normal cases were randomly selected. Analysis of TP53 (rs1042522) showed a significantly higher frequency in cancer samples (OR=1.22, 95%CI=1.004-1.481, p-value=0.016) while differences in frequency were not significant within each group (p-value=0.070). The genotype distributions of p16 (rs11515 and rs3088440) and NQO1 (rs1800566) did not show any significantly higher frequency in cancer samples (p-value=0.106, 0.675 and 0.132, respectively) or within each group (p-value=0.347, 0.939 and 0.111, respectively). The results indicated that the polymorphism in TP53 (rs1042522) might be associated with risk of cervical cancer development in HPV16 infected women. Further studies of possible mechanisms of influence on cervical cancer development would be useful to manage HPV infected patients.
Keywords
Single nucleotide polymorphisms; TP53; p16; NQO1; human papillomavirus;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Sousa H, Santos AM, Pinto D, Medeiros R (2011). Is there a biological plausibility for p53 codon 72 polymorphism influence on cervical cancer development? Acta Med Port, 24, 127-34.
2 Sousa H, Santos AM, Pinto D, Medeiros R (2007). Is the p53 codon 72 polymorphism a key biomarker for cervical cancer development? A meta-analysis review within European populations. Int J Mol Med, 20, 731-41.
3 Storey A, Thomas M, Kalita A, et al (1998). Role of a p53 polymorphism in the development of human papillomavirusassociated cancer. Nature, 393, 229-34.   DOI   ScienceOn
4 Thakur N, Hussain S, Nasare V, et al (2012). Association analysis of p16 (CDKN2A) and RB1 polymorphisms with susceptibility to cervical cancer in Indian population. Mol Biol Rep, 39, 407-14.   DOI
5 Thomas M, Kalita A, Labrecque S, et al (1999). Two polymorphic variants of wild-type p53 differ biochemically and biologically. Mol Cell Biol, 19, 1092-100.
6 Thurow HS, Haack R, Hartwig FP, et al (2011). TP53 gene polymorphism: importance to cancer, ethnicity and birth weight in a Brazilian cohort. J Biosci, 36, 823-31.   DOI
7 Tsvetkov P, Reuven N, Shaul Y (2010). Ubiquitin-independent p53 proteasomal degradation. Cell Death Differ, 17, 103-8.   DOI   ScienceOn
8 Walboomers JM, Jacobs MV, Manos MM, et al (1999). Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J Pathol, 189, 12-9.   DOI   ScienceOn
9 Yan L, Na W, Shan K, et al (2008). p16 (CDKN2) gene polymorphism: association with histologic subtypes of epithelial ovarian cancer in China. Int J Gynecol Cancer, 18, 30-5.   DOI   ScienceOn
10 Brooks CL, Gu W (2006). p53 ubiquitination: Mdm2 and beyond. Mol Cell, 21, 307-15.   DOI   ScienceOn
11 Chansaenroj J, Lurchachaiwong W, Termrungruanglert W, et al (2010). Prevalence and genotypes of human papillomavirus among Thai women. Asian Pac J Cancer Prev, 11, 117-22.
12 Chattopadhyay K (2011). A comprehensive review on host genetic susceptibility to human papillomavirus infection and progression to cervical cancer. Indian J Hum Genet, 17, 132-44.   DOI   ScienceOn
13 Chansaenroj J, Theamboonlers A, Junyangdikul P, et al (2012). Whole genome analysis of human papillomavirus type 16 multiple infection in cervical cancer patients. Asian Pac J Cancer Prev, 13, 599-606.   DOI   ScienceOn
14 Chao C, Zhang ZF, Berthiller J, Boffetta P, Hashibe M (2006). NAD(P)H:quinone oxidoreductase 1 (NQO1) Pro187Ser polymorphism and the risk of lung, bladder, and colorectal cancers: a meta-analysis. Cancer Epidemiol Biomarkers Prev, 15, 979-87.   DOI   ScienceOn
15 Eltahir HA, Elhassan AM, Ibrahim ME (2012). Contribution of retinoblastoma LOH and the p53 Arg/Pro polymorphism to cervical cancer. Mol Med Report, 6, 473-6.
16 Geddert H, Kiel S, Zotz RB, et al (2005). Polymorphism of p16 INK4A and cyclin D1 in adenocarcinomas of the upper gastrointestinal tract. J Cancer Res Clin Oncol, 131, 803-8.   DOI
17 Hemminki K, Dong C, Vaittinen P (1999). Familial risks in cervical cancer: Is there a hereditary component? Int J Cancer, 82, 775-81.   DOI   ScienceOn
18 Hu X, Zhang Z, Ma D, et al (2010). TP53, MDM2, NQO1, and susceptibility to cervical cancer. Cancer Epidemiol Biomarkers Prev, 19, 755-61.   DOI   ScienceOn
19 Jee SH, Won SY, Yun JE, et al (2004). Polymorphism p53 codon-72 and invasive cervical cancer: a meta-analysis. Int J Gynaecol Obstet, 85, 301-8.   DOI   ScienceOn
20 Kelsey KT, Ross D, Traver RD, et al (1997). Ethnic variation in the prevalence of a common NAD(P)H quinone oxidoreductase polymorphism and its implications for anticancer chemotherapy. Br J Cancer, 76, 852-54.   DOI   ScienceOn
21 Koshiol J, Hildesheim A, Gonzalez P, et al (2009). Common genetic variation in TP53 and risk of human papillomavirus persistence and progression to CIN3/cancer revisited. Cancer Epidemiol Biomarkers Prev, 18, 1631-7.   DOI   ScienceOn
22 Kohaar I, Thakur N, Salhan S, et al (2007). TNFalpha-308G/A polymorphism as a risk factor for HPV associated cervical cancer in Indian population. Cell Oncol, 29, 249-56.
23 Koushik A, Platt RW, Franco EL (2004). p53 codon 72 polymorphism and cervical neoplasia: a meta-analysis review. Cancer Epidemiol Biomarkers Prev, 13, 11-22.   DOI   ScienceOn
24 Koshiol J, Lindsay L, Pimenta JM, et al (2008). Persistent human papillomavirus infection and cervical neoplasia: a systematic review and meta-analysis. Am J Epidemiol, 168, 123-37.   DOI   ScienceOn
25 Lafuente MJ, Casterad X, Trias M, et al (2000). NAD(P) H:quinone oxidoreductase-dependent risk for colorectal cancer and its association with the presence of K-ras mutations in tumors. Carcinogenesis, 21, 1813-9.   DOI   ScienceOn
26 Makni H, Franco EL, Kaiano J, et al (2000). P53 polymorphism in codon 72 and risk of human papillomavirus-induced cervical cancer: effect of inter-laboratory variation. Int J Cancer, 87, 528-33.   DOI   ScienceOn
27 Magnusson PK, Sparen P, Gyllensten UB (1999). Genetic link to cervical tumours. Nature, 400, 29-30.   DOI   ScienceOn
28 Meek DW (2009). Tumor suppression by p53: a role for the DNA damage response? Nat Rev Cancer, 9, 714-23.
29 Narisawa-Saito M, Kiyono T (2007). Basic mechanisms of highrisk human papillomavirus-induced carcinogenesis: roles of E6 and E7 proteins. Cancer Sci, 98, 1505-11.   DOI   ScienceOn
30 Niwa Y, Hirose K, Nakanishi T, et al (2005). Association of the NAD(P)H: quinone oxidoreductase C609T polymorphism and the risk of cervical cancer in Japanese subjects. Gynecol Oncol, 96, 423-9.   DOI   ScienceOn
31 Rosvold EA, McGlynn KA, Lustbader ED, Buetow KH (1995). Identification of an NAD(P)H:quinone oxidoreductase polymorphism and its association with lung cancer and smoking. Pharmacogenetics, 5, 199-206.   DOI   ScienceOn
32 Ojeda JM, Ampuero S, Rojas P, et al (2003). p53 codon 72 polymorphism and risk of cervical cancer. Biol Res, 36, 279-83.
33 Oliveira S, Sousa H, Santos AM, et al (2008). The p53 R72P polymorphism does not influence cervical cancer development in a Portuguese population: a study in exfoliated cervical cells. J Med Virol, 80, 24-9.
34 Pina-Sanchez P, Hernandez-Hernandez DM, Taja-Chayeb L, et al (2011). Polymorphism in exon 4 of TP53 gene associated to HPV 16 and 18 in Mexican women with cervical cancer. Med Oncol, 28, 1507-13.   DOI   ScienceOn
35 Rogler A, Rogenhofer M, Borchardt A, et al (2011). P53 codon 72 (Arg72Pro) polymorphism and prostate cancer risk: association between disease onset and proline genotype. Pathobiology, 78, 193-200.   DOI   ScienceOn
36 Sauroja I, Smeds J, Vlaykova T, et al (2000). Analysis of G(1)/S checkpoint regulators in metastatic melanoma. Genes Chromosomes Cancer, 28, 404-4.   DOI   ScienceOn
37 Schulz WA, Krummeck A, Rosinger I, et al (1997). Increased frequency of a null-allele for NAD(P)H: quinone oxidoreductase in patients with urological malignancies. Pharmacogenetics, 7, 235-9.   DOI   ScienceOn
38 Siegel D, McGuinness SM, Winski SL, Ross D (1999). Genotypephenotype relationships in studies of a polymorphism in NAD(P)H:quinone oxidoreductase 1. Pharmacogenetics, 9, 113-21.   DOI   ScienceOn
39 Zheng Y, Shen H, Sturgis EM, et al (2002). Haplotypes of two variants in p16 (CDKN2/MTS-1/INK4a) exon 3 and risk of squamous cell carcinoma of the head and neck: a case-control study. Cancer Epidemiol Biomarkers Prev, 11, 640-5.