Browse > Article
http://dx.doi.org/10.7314/APJCP.2013.14.10.5579

Cancer Stem Cells in Head and Neck Squamous Cell Carcinoma: A Review  

Satpute, Pranali Shirish (Department of Oral and Maxillofacial Pathology, Government Dental College and Hospital)
Hazarey, Vinay (Department of Oral and Maxillofacial Pathology, Government Dental College and Hospital)
Ahmed, Riyaz (Department of Dentistry, Government Medical College and Hospital)
Yadav, Lalita (Department of Oral and Maxillofacial Pathology, Kalka Dental College and Hospital)
Publication Information
Asian Pacific Journal of Cancer Prevention / v.14, no.10, 2013 , pp. 5579-5587 More about this Journal
Abstract
Research indicates that a small population of cancer cells is highly tumorigenic, endowed with the capacity for self-renewal, and has the ability to differentiate into cells that constitute the bulk of tumors. These cells are considered the "drivers" of the tumorigenic process in some tumor types, and have been named cancer stem cells (CSC). Epithelial-mesenchymal transition (EMT) appears to be involved in the process leading to the acquisition of stemness by epithelial tumor cells. Through this process, cells acquire an invasive phenotype that may contribute to tumor recurrence and metastasis. CSC have been identified in human head and neck squamous cell carcinomas (HNSCC) using markers such as CD133 and CD44 expression, and aldehyde dehydrogenase (ALDH) activity. Head and neck cancer stem cells reside primarily in perivascular niches in the invasive fronts where endothelial-cell initiated events contribute to their survival and function. Clinically, CSC enrichment has been shown to be enhanced in recurrent disease, treatment failure and metastasis. CSC represent a novel target of study given their slow growth and innate mechanisms conferring treatment resistance. Further understanding of their unique phenotype may reveal potential molecular targets to improve therapeutic and survival outcomes in patients with HNSCC. Here, we discuss the state-of-the-knowledge on the pathobiology of cancer stem cells, with a focus on the impact of these cells on head and neck tumor progression, metastasis and recurrence due to treatment failure.
Keywords
Cancer stem cells; epithelial-mesenchymal transition; head and neck squamous cell carcinoma;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Isacke C, Yarwood H (2002). The hyaluronan receptor, CD44. Int J Biochem Cell Biol, 34, 718-21.   DOI   ScienceOn
2 Iwatsuki M, Mimori K, Yokobori T, et al (2010). Epithelial-mesenchymal transition in cancer development and its clinical significance. Cancer Sci, 101, 293-9.   DOI   ScienceOn
3 Kalluri R, Neilson E (2003). Epithelial-mesenchymal transition and its implications for fibrosis. J Clin Invest, 112, 1776-84.   DOI
4 Jemal A, Bray F, Center M, et al (2011). Global cancer statistics. CA Cancer J Clin, 61, 69-90.   DOI
5 Joshua B, Kaplan M, Doweck I, et al (2012). Frequency of cells expressing CD44,ahead and neck cancer stem cell marker: correlation with tumor aggressiveness. Head Neck, 34, 42-9.   DOI   ScienceOn
6 Kajita M, Itoh Y, Chiba T, et al (2001). Membrane-type 1 matrix metalloproteinase cleaves CD44 and promotes cell migration. J Cell Biol, 153, 893-904.   DOI   ScienceOn
7 Koukourakis MI, Giatromanolaki A, Tsakmaki V, et al (2012). Cancer stem cell phenotype relates to radiochemotherapy out come in locally advanced squamous cell head-neck cancer. Br J Cancer, 106, 846-53.   DOI   ScienceOn
8 Krishnamurthy S, Dong Z, Vodopyanov D, et al (2010). Endothelial cell-initiated signalling promotes the survival and self renewal of cancer stem cells. Cancer Res, 70, 9969-78.   DOI
9 Krishnamurthy S, Nor J (2012). Head and neck cancer stem cells. J Dent Res, 91, 334-40.   DOI   ScienceOn
10 Kuhn N, Tuan R (2010). Regulation of stemness and stem cell niche of mesenchymal stem cells: implications in tumorigenesis and metastasis. J Cell Physiol, 222, 268-77.   DOI   ScienceOn
11 Morel A, Lievre M, Thomas C, et al (2008). Generation of breast cancer stem cells through epithelial-mesenchymal transition. PLoS One, 3, 2888.   DOI   ScienceOn
12 Lim S, Oh S (2005). The role of CD24 in various human epithelial neoplasias. Pathol Res Pract, 201, 479-86.   DOI   ScienceOn
13 Lim Y, Oh S, Cha Y, et al (2011). Cancer stem cell traits in squamospheres derived from primary head and neck squamous cell carcinomas. Oral Oncol, 47, 83-91.   DOI   ScienceOn
14 Mani S, Guo W, Liao M, et al (2008). The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell, 133, 704-15.   DOI   ScienceOn
15 Moreno-Bueno G, Portillo F, Cano A (2008). Transcriptional regulation of cell polarity in EMT and cancer. Oncogene, 27, 6958-69.   DOI   ScienceOn
16 Morrison S, Spradling A (2008). Stem cells and niches: Mechanisms that promote stem cell maintenance throughout life. Cell, 132, 598-611.   DOI   ScienceOn
17 Neiva K, Zhang Z, Miyazawa M, et al (2009). Crosstalk initiated by endothelial cells enhances migration and inhibits anoikis of squamous cell carcinoma cells through STAT/Akt/ERK signaling. Neoplasia, 11, 583-93.
18 Nor J, Peters M, Christensen J, et al (2001). Engineering and characterization of functional human microvessels in immunodeficient mice. Lab Invest, 81, 453-63.   DOI
19 Nowell P (1976). The clonal evolution of tumor cell populations. Science, 194, 23-8   DOI
20 Allegra E, Baudi F, La Boria A, et al (2009). Multiple head and neck tumours and their genetic relationship. Acta Otorhinolaryngol Ital, 29, 237-41.
21 Al-Hajj M, Wicha M, Benito-Hernandez A, et al (2003). Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA, 100, 3983-8.   DOI   ScienceOn
22 Pierce G, Dixon F, Verney E (1960). Teratocarcinogenic and tissue forming potentials of the cell types comprising neoplastic embryoid bodies. Lab Invest, 9, 583-602.
23 Okamoto A, Chikamatsu K, Sakakura K, et al (2009). Expansion and characterization of cancer stem-like cells in squamous cell carcinoma of the head and neck. Oral Oncol, 45, 633-9.   DOI   ScienceOn
24 Prince M, Sivanandan R, Kaczorowski A, et al (2007). Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc Natl Acad Sci USA, 104, 973-8.   DOI   ScienceOn
25 Perl A, Wilgenbus P, Dahl U, et al (1998). A causal role for Ecadherin in the transition from adenoma to carcinoma. Nature, 392, 190-3.   DOI   ScienceOn
26 Prince M, Ailles L (2008). Cancer stem cells in head and neck squamous cell cancer. J Clin Oncol, 26, 2871-5.   DOI   ScienceOn
27 Reya T, Morrison S, Clarke M, et al (2001). Stem cells, cancer, and cancer stem cells. Nature, 414, 105-11.   DOI   ScienceOn
28 Radisky D, LaBarge M (2008). Epithelial-mesenchymal transition and the stem cell phenotype. Cell Stem Cell, 2, 511-2.   DOI   ScienceOn
29 Sanchez-Tillo E, Lazaro A, Torrent R, et al (2010). ZEB1 represses E-cadherin and induces an EMT by recruiting the SWI/ SNF chromatin-remodeling protein BRG1. Oncogene, 29, 3490-500.   DOI   ScienceOn
30 Singh S, Hawkins C, Clarke I, et al (2004). Identification of human brain tumour initiating cells. Nature, 432, 396-401.   DOI   ScienceOn
31 Bosron W, Lumeng L, Li T (1988). Genetic polymorphism of enzymes of alcohol metabolism and susceptibility to alcoholic liver disease. Mol Aspects Med, 10, 147-58.   DOI   ScienceOn
32 Allegra E, Garozzo A, Lombardo N, et al (2006). Mutations and polymorphisms in mitochondrial DNA in head and neck cancer cell lines. Acta Otorhinolaryngol Ital, 26, 185-90.
33 Allegra E, Trapasso S (2012). Cancer stem cells in head and neck cancer. Onco Targets and Therapy, 5, 375-83.
34 Batlle E, Sancho E, Franci C, et al (2000). The transcription factor snail is a repressor of E-cadherin gene expression in the epithelial tumour cells. Nat Cell Biol, 2, 84-9.   DOI   ScienceOn
35 Baumann M, Krause M (2010). CD44: a cancer stem cell-related biomarker with predictive potential for radiotherapy. Clin Cancer Res, 16, 5091-3.   DOI
36 Borovski T, De Souza E, Melo F, et al (2011). Cancer stem cell niche: the place to be. Cancer Res, 71, 634-9.   DOI
37 Braakhuis B, Tabor M, Leemans C, et al (2002). Second primary tumors and field cancerization in oral and oropharyngeal cancer: molecular techniques provide new insights and definitions. Head Neck, 24, 198-206.   DOI   ScienceOn
38 Braakhuis B, Leemans C, Brakenhoff RH, et al (2005). Expanding fields of genetically altered cells in head and neck squamous carcinogenesis. Semin Cancer Biol, 15, 113-20.   DOI   ScienceOn
39 Califano J, Westra W, Meininger G, et al (2000). Genetic progression and clonal relationship of recurrent premalignant head and neck lesions. Clin Cancer Res, 2, 347-52.
40 Shook D, Keller R (2003). Mechanisms, mechanics and function of epithelialmesenchymal transition in early development. Mech Dev, 120, 1351-83.   DOI   ScienceOn
41 Spivakov M, Fisher A (2007). Epigenetic signatures of stem-cell identity. Nat Rev Cancer, 8, 263-71.   DOI   ScienceOn
42 Thomasson H, Edenberg H, Crabb D, et al (1991). Alcohol and aldehyde dehydrogenase genotypes and alcoholism in Chinese men. Am J Hum Genet, 148, 677-81.
43 Sun S, Wang Z (2011). Head neck squamous cell carcinoma c-Met+ cells display cancer stem cell properties and are responsible for cisplatin-resistance and metastasis. Int J Cancer, 129, 2337-48.   DOI   ScienceOn
44 Thiery J (2002). Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer, 2, 442-54.   DOI   ScienceOn
45 Till J, McCulloch E (1961). A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiat Res, 14, 213-22.   DOI   ScienceOn
46 Valk-lingbeek M, Bruggeman S, Van Lohuizen M (2004). Stem cells and cancer; the polycomb connection. Cell, 118, 409-18.   DOI   ScienceOn
47 Vlashi E, McBride W, Pajonk, F (2009). Radiation responses of cancer stem cells. J Cell Biochem, 108, 339-42.   DOI   ScienceOn
48 Visus C, Ito D, Amoscato A, et al (2007). Identification of human aldehyde dehydrogenase 1 family member A1 as a novel CD8+ T-cell-defined tumor antigen in squamous cell carcinoma of the head and neck. Cancer Res, 67, 10538-45.   DOI   ScienceOn
49 Visvader J, Lindeman G (2008). Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer, 8, 755-68.   DOI   ScienceOn
50 Cano A, Perez-Moreno M, Rodrigo I, et al (2000). The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol, 2, 76-83.   DOI   ScienceOn
51 Chikamatsu K, Ishii H, Takahashi G, et al (2012). Resistance to apoptosis-inducing stimuli in CD44+ head and neck squamous cell carcinoma cells. Head Neck, 34, 336-43.   DOI   ScienceOn
52 Chen C, Wei Y ,Hummel M, et al (2011). Evidence for epithelial- mesenchymal transition in cancer stem cells of head and neck squamous cell carcinoma. PLoS One, 6, 16466.   DOI   ScienceOn
53 Chen Y, Chen Y, Hsu H, et al (2009). Aldehyde dehydrogenase 1 is a putative marker for cancer stem cells in head and neck squamous cancer. Biochem Biophys Res Commun, 385, 307-13.   DOI   ScienceOn
54 Cheng G, Chan J, Wang Q, et al (2007). Twist transcriptionally up-regulates AKT2 in breast cancer cells leading to increased migration, invasion and resistance to paclitaxel. Cancer Res, 67, 1979-87.   DOI   ScienceOn
55 Chiou S, Yu C, Huang Y, et al (2008). Positive correlations of Oct-4 and Nanog in oral cancer stem-like cells and high grade oral squamous cell carcinoma. Clin Cancer Res, 14, 4085-95.   DOI   ScienceOn
56 Clarke M, Dick J, Dirks P, et al (2006). Cancer stem cells: Perspectives on current status and future directions: AACR workshop on cancer stem cells. Cancer Res, 66, 9339-44.   DOI   ScienceOn
57 Cohnheim J (1875). Congenitales, quergestreiftes muskelsarkon der nireren. Virchows Arch, 65, 64.   DOI
58 Collins A, Berry P, Hyde C, et al (2005). Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res, 65, 10946-51.   DOI   ScienceOn
59 Xia H, Cheung WK, Sze J, et al (2010). MiR-200a regulates epithelial-mesenchymal to stem-like transition via ZEB2 and ${\beta}$-catenin signaling. J Biol Chem, 285, 36995-7004.   DOI   ScienceOn
60 Wang S, Wong G, de Heer A, et al (2009). CD44 variant isoforms in head and neck squamous cell carcinoma progression. Laryngoscope, 119, 1518-30.   DOI   ScienceOn
61 Whiteman E, Liu C, Fearon E, et al (2008). The transcription factor snail represses Crumbs3 expression and disrupts apico-basal polarity complexes. Oncogene, 27, 3875-9.   DOI   ScienceOn
62 Wollenberg B (2011). Implication of stem cells in the biology and therapy of head and neck cancer. GMS Curr Top Otolaryngol Head Neck Surg, 10.
63 Yang A, Fan F, Camp E (2006). Chronic oxaliplatin resistance induces epithelial-to-mesenchymal transition in colorectal cancer cell lines. Clin Cancer Res, 12, 4147-53.   DOI   ScienceOn
64 Yang J, Mani S, Donaher J, et al (2004). Twist a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell, 117, 927-39.   DOI   ScienceOn
65 Yang M, Wu M, Chiou S, et al (2008). Direct regulation of TWIST by HIF-1a promotes metastasis. Nat Cell Biol, 10, 295-305.   DOI   ScienceOn
66 Yang M, Hsu D, Wang H, et al (2010). Bmi-1 is essential in twist1-induced epithelial-mesenchymal transition. Nat Cell Biol, 12, 982-92.   DOI   ScienceOn
67 Zhang P, Zhang Y, Mao L, et al (2009). Side population in oral squamous cell carcinoma possesses tumor stem cell phenotypes. Cancer Lett, 277, 227-34.   DOI   ScienceOn
68 Durante F (1874). Nessus pathophysiological between the flaw structure of the mother and the genesis of some malignant tumors. Arch Memor Observ Chir Prat, 111, 217.
69 Dalerba P, Dylla S, Park I, et al (2007). Phenotypic characterization of human colorectal cancer stem cells. Proc Natl Acad Sci USA, 104, 10158-63.   DOI   ScienceOn
70 Davis S, Divi V, Owen J, et al (2010). Metastatic potential of cancer stem cells in head and neck squamous cell carcinoma. arch otolaryngol. Head Neck Surg, 136, 1260-6.   DOI   ScienceOn
71 Eramo A, Lotti F, Sette G, et al (2008). Identification and expansion of the tumorigenic lung cancer stem cell population. Cell Death Differ, 15, 504-14.   DOI   ScienceOn
72 Fang D, Nguyen T, Leishear K, et al (2005). A tumorigenic subpopulation with stem cell properties in melanomas. Cancer Res, 65, 9328-37.   DOI   ScienceOn
73 Garozzo A, Cutrona D, Palmeri S, et al (1999). The role of p53 tumor suppressor gene as prognostic factor in laryngeal squamous cell carcinoma. Acta Otorhinolaryngol Ital, 19, 342-7.
74 Ginestier C, Hur M, Charafe-Jauffret E, et al (2007). ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell, 1, 555-67.   DOI   ScienceOn
75 Hermann P, Huber S, Herrler T, et al (2007). Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell, 1, 313-23.   DOI   ScienceOn
76 Hirschmann-Jax C, Foster A, Wulf G, et al (2004). A distinct "side population" of cells with high drug efflux capacity in human tumor cells. Proc Natl Acad Sci USA, 101, 14228-33.   DOI   ScienceOn
77 Zhou L, Wei X, Cheng L, et al (2007). CD133,one of the markers of cancer stem cells in Hep-2cell line. Laryngoscope, 117, 455-60.   DOI   ScienceOn
78 Zhang Q, Shi S, Yen Y, et al (2010). A subpopulation of CD133(+) cancer stem-like cells characterized in human oral squamous cell carcinoma confer resistance to chemotherapy. Cancer Lett, 289, 151-60.   DOI   ScienceOn
79 Zhang Z, Neiva K, Lingen M, et al (2010). VEGF-dependent tumor angiogenesis requires inverse and reciprocal regulation of VEGFR1 and VEGFR2. Cell Death Differ, 17, 499-512.   DOI   ScienceOn
80 Zhang Z, Filho M, Nor J (2012). The biology of head and neck cancer stem cells. Oral Oncol, 48, 1-9.   DOI   ScienceOn
81 Li Q, Xu J, Wang W, et al (2009). Twist1-mediated adriamycin-induced epithelial-mesenchymal transition relates to multidrug resistance and invasive potential in breast cancer cells. Clin Cancer Res, 15, 2657-65.   DOI   ScienceOn
82 Carvalho A, Nishimoto I, Califano J, et al (2005). Trends in incidence and prognosis for head and neck cancer in the United States: a site-specific analysis of the SEER database. Int J Cancer, 114, 806-16.   DOI   ScienceOn
83 Kalluri R, Weinberg R (2009). The basics of epithelial-mesenchymal transition. J Clin Invest, 119, 1420-8.   DOI   ScienceOn
84 Thiery J, Acloque H, YJ Huang R, et al (2009). Epithelial-mesenchymal transitions in development and disease. Cell, 139, 871-90.   DOI   ScienceOn
85 Bonnet D, Dick J (1997). Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med, 3, 730-7.   DOI   ScienceOn
86 Fuchs E, Tumbar T, Guasch G (2004). Socializing with the neighbours: stem cells and their niche. Cell, 116, 769-78.   DOI   ScienceOn
87 Park I, Morrison S, Clarke M (2004). Bmi-1, stem cells, and senescence regulation. J Clin Invest, 113, 175-9.   DOI
88 Rasper M, Schafer A, Piontek G, et al (2010). Aldehyde dehydrogenase 1 positive glioblastoma cells show brain tumor stem cell capacity. Neuro Oncol, 12, 1024-33.   DOI
89 Widschwendter M, Fiegl H, Egle D, et al (2007). Epigenetic stem cell signature in cancer. Nat Genet, 39, 157-8.   DOI   ScienceOn