Browse > Article
http://dx.doi.org/10.7314/APJCP.2012.13.7.3313

MicroRNA Expression Profile Analysis Reveals Diagnostic Biomarker for Human Prostate Cancer  

Liu, Dong-Fu (Department of Urology, Yantai Yuhuangding Hospital)
Wu, Ji-Tao (Department of Urology, Yantai Yuhuangding Hospital)
Wang, Jian-Ming (Department of Urology, Yantai Yuhuangding Hospital)
Liu, Qing-Zuo (Department of Urology, Yantai Yuhuangding Hospital)
Gao, Zhen-Li (Department of Urology, Yantai Yuhuangding Hospital)
Liu, Yun-Xiang (Department of Urology, Yantai Yuhuangding Hospital)
Publication Information
Asian Pacific Journal of Cancer Prevention / v.13, no.7, 2012 , pp. 3313-3317 More about this Journal
Abstract
Prostate cancer is a highly prevalent disease in older men of the western world. MicroRNAs (miRNAs) are small RNA molecules that regulate gene expression via posttranscriptional inhibition of protein synthesis. To identify the diagnostic potential of miRNAs in prostate cancer, we downloaded the miRNA expression profile of prostate cancer from the GEO database and analysed the differentially expressed miRNAs (DE-miRNAs) in prostate cancerous tissue compared to non-cancerous tissue. Then, the targets of these DE-miRNAs were extracted from the database and mapped to the STRING and KEGG databases for network construction and pathway enrichment analysis. We identified a total of 16 miRNAs that showed a significant differential expression in cancer samples. A total of 9 target genes corresponding to 3 DE-miRNAs were obtained. After network and pathway enrichment analysis, we finally demonstrated that miR-20 appears to play an important role in the regulation of prostate cancer onset. MiR-20 as single biomarker or in combination could be useful in the diagnosis of prostate cancer. We anticipate our study could provide the groundwork for further experiments.
Keywords
Prostate cancer; microRNA; network analysis; pathway enrichment;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Garcia DM, Baek D, Shin C, et al (2011). Weak seed-pairing stability and high target-site abundance decrease the proficiency of lsy-6 and other microRNAs. Nat Struct Mol Biol, 18, 1139-46.   DOI   ScienceOn
2 Gautier L, Cope L, Bolstad BM, Irizarry RA (2004). affy--analysis of Affymetrix GeneChip data at the probe level. Bioinformatics, 20, 307-15.   DOI
3 Hao P, Chen X, Geng H, et al (2004). Expression and implication of hypoxia inducible factor-1alpha in prostate neoplasm. J Huazhong Univ Sci Technolog Med Sci, 24, 593-5.   DOI
4 Horvath S, Zhang B, Carlson M, et al (2006). Analysis of oncogenic signaling networks in glioblastoma identifies ASPM as a molecular target. Proc Natl Acad Sci USA, 103, 17402-7.   DOI
5 Iorio MV, Ferracin M, Liu CG, et al (2005). MicroRNA gene expression deregulation in human breast cancer. Cancer Res, 65, 7065-70.   DOI   ScienceOn
6 Irizarry RA, Hobbs B, Collin F, et al (2003). Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics, 4, 249-64.   DOI   ScienceOn
7 John B, Enright AJ, Aravin A, et al (2004). Human MicroRNA targets. PLoS Biol, 2, e363.   DOI   ScienceOn
8 Kanehisa M (2002). The KEGG database. Novartis Found Symp, 247, 91-101; discussion -3, 19-28, 244-52.   DOI
9 Kimbro KS, Simons JW (2006). Hypoxia-inducible factor-1 in human breast and prostate cancer. Endocr Relat Cancer, 13, 739-49.   DOI   ScienceOn
10 Kozomara A, Griffiths-Jones S (2011). miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res, 39, D152-7.   DOI
11 Krek A, Grun D, Poy MN, et al (2005). Combinatorial microRNA target predictions. Nat Genet, 37, 495-500.   DOI   ScienceOn
12 Lee EJ, Gusev Y, Jiang J, et al (2007). Expression profiling identifies microRNA signature in pancreatic cancer. Int J Cancer, 120, 1046-54.
13 Lee RC, Feinbaum RL, Ambros V (1993). The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 75, 843-54.   DOI   ScienceOn
14 Linton DK, Hamdy FC (2004). Early diagnosis and surgical management of prostate cancer. Ann Urol (Paris), 38, 137-47.   DOI
15 Logothetis CJ, Lin SH (2005). Osteoblasts in prostate cancer metastasis to bone. Nat Rev Cancer, 5, 21-8.   DOI
16 Lu J, Getz G, Miska EA, et al (2005). MicroRNA expression profiles classify human cancers. Nature, 435, 834-8.   DOI   ScienceOn
17 Mattie MD, Benz CC, Bowers J, et al (2006). Optimized high-throughput microRNA expression profiling provides novel biomarker assessment of clinical prostate and breast cancer biopsies. Mol Cancer, 5, 24.   DOI   ScienceOn
18 McCarron SL, Edwards S, Evans PR, et al (2002). Influence of cytokine gene polymorphisms on the development of prostate cancer. Cancer Res, 62, 3369-72.
19 Min H, Yoon S (2010). Got target? Computational methods for microRNA target prediction and their extension. Exp Mol Med, 42, 233-44.   과학기술학회마을   DOI
20 Murakami Y, Yasuda T, Saigo K, et al (2006). Comprehensive analysis of microRNA expression patterns in hepatocellular carcinoma and non-tumorous tissues. Oncogene, 25, 2537-45.   DOI   ScienceOn
21 O'Donnell KA, Wentzel EA, Zeller KI, et al (2005). c-Myc-regulated microRNAs modulate E2F1 expression. Nature, 435, 839-43.   DOI   ScienceOn
22 Ozen M, Creighton CJ, Ozdemir M, Ittmann M (2008). Widespread deregulation of microRNA expression in human prostate cancer. Oncogene, 27, 1788-93.   DOI
23 Porkka KP, Pfeiffer MJ, Waltering KK, et al (2007). MicroRNA expression profiling in prostate cancer. Cancer Res, 67, 6130-5.   DOI   ScienceOn
24 Schaefer A, Jung M, Miller K, et al (2010). Suitable reference genes for relative quantification of miRNA expression in prostate cancer. Exp Mol Med, 42, 749-58.   DOI
25 Schaefer A, Jung M, Mollenkopf HJ, et al (2010). Diagnostic and prognostic implications of microRNA profiling in prostate carcinoma. Int J Cancer, 126, 1166-76.
26 Semenza GL (2003). Targeting HIF-1 for cancer therapy. Nat Rev Cancer, 3, 721-32.   DOI
27 Sempere LF, Christensen M, Silahtaroglu A, et al (2007). Altered MicroRNA expression confined to specific epithelial cell subpopulations in breast cancer. Cancer Res, 67, 11612-20.   DOI
28 Sfar S, Hassen E, Saad H, et al (2006). Association of VEGF genetic polymorphisms with prostate carcinoma risk and clinical outcome. Cytokine, 35, 21-8.   DOI
29 Shen MM, Abate-Shen C (2010). Molecular genetics of prostate cancer: new prospects for old challenges. Genes Dev, 24, 1967-2000.   DOI
30 Siegel R, Naishadham D, Jemal A (2012). Cancer statistics, 2012. CA Cancer J Clin, 62, 10-29.   DOI   ScienceOn
31 Szklarczyk D, Franceschini A, Kuhn M, et al (2011). The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Res, 39, D561-8.   DOI
32 Team RDC (2011). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing.
33 Tong AW, Fulgham P, Jay C, et al (2009). MicroRNA profile analysis of human prostate cancers. Cancer Gene Ther, 16, 206-16.
34 van der Laan MJ, Dudoit S, Pollard KS (2004). Augmentation procedures for control of the generalized family-wise error rate and tail probabilities for the proportion of false positives. Stat Appl Genet Mol Biol, 3, Article15.
35 Volinia S, Calin GA, Liu CG, et al (2006). A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA, 103, 2257-61.   DOI   ScienceOn
36 Wach S, Nolte E, Szczyrba J, et al (2012). MicroRNA profiles of prostate carcinoma detected by multiplatform microRNA screening. Int J Cancer, 130, 611-21.   DOI
37 Wang Y, Shao C, Shi CH, et al (2005). Change of the cell cycle after flutamide treatment in prostate cancer cells and its molecular mechanism. Asian J Androl, 7, 375-80.   DOI
38 Wightman B, Ha I, Ruvkun G (1993). Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell, 75, 855-62.   DOI   ScienceOn
39 Zhang JF, Fu WM, He ML, et al (2011). MiRNA-20a promotes osteogenic differentiation of human mesenchymal stem cells by co-regulating BMP signaling. RNA Biol, 8.
40 Zhong H, Agani F, Baccala AA, et al (1998). Increased expression of hypoxia inducible factor-1alpha in rat and human prostate cancer. Cancer Res, 58, 5280-4.
41 Ambs S, Prueitt RL, Yi M, et al (2008). Genomic profiling of microRNA and messenger RNA reveals deregulated microRNA expression in prostate cancer. Cancer Res, 68, 6162-70.   DOI
42 Bartel DP (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 116, 281-97.   DOI   ScienceOn
43 Benjamini YH, Y (1995). Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. Journal of the royal statistical society Series B (Methodological), 57, 289-300.
44 Berezikov E, Guryev V, van de Belt J, et al (2005). Phylogenetic shadowing and computational identification of human microRNA genes. Cell, 120, 21-4.   DOI   ScienceOn
45 Bubendorf L, Schopfer A, Wagner U, et al (2000). Metastatic patterns of prostate cancer: an autopsy study of 1,589 patients. Hum Pathol, 31, 578-83.   DOI
46 Chan JM, Jou RM, Carroll PR (2004). The relative impact and future burden of prostate cancer in the United States. J Urol, 172, S13-6; discussion S7.   DOI
47 Cummins JM, He Y, Leary RJ, et al (2006). The colorectal microRNAome. Proc Natl Acad Sci U S A, 103, 3687-92.   DOI
48 Ferrara N, Gerber HP, LeCouter J (2003). The biology of VEGF and its receptors. Nat Med, 9, 669-76.   DOI   ScienceOn