Browse > Article
http://dx.doi.org/10.7314/APJCP.2012.13.2.699

Quantitative Assessment of the Relative Antineoplastic Potential of the n-butanolic Leaf Extract of Annona Muricata Linn. in Normal and immortalized Human Cell Lines  

George, V. Cijo (School of Bio Sciences and Technology, VIT University)
Kumar, D.R. Naveen (School of Bio Sciences and Technology, VIT University)
Rajkumar, V. (School of Bio Sciences and Technology, VIT University)
Suresh, P.K. (School of Bio Sciences and Technology, VIT University)
Kumar, R. Ashok (Department of Zoology, Government Arts College)
Publication Information
Asian Pacific Journal of Cancer Prevention / v.13, no.2, 2012 , pp. 699-704 More about this Journal
Abstract
Natural products have been the target for cancer therapy for several years but there is still a dearth of information on potent compounds that may protect normal cells and selectively destroy cancerous cells. The present study was aimed to evaluate the cytotoxic potential of n-butanolic leaf extract of $Annona$ $muricata$ L. on WRL-68 (normal human hepatic cells), MDA-MB-435S (human breast carcinoma cells) and HaCaT (human immortalized keratinocyte cells) lines by XTT assay. Prior to cytotoxicity testing, the extract was subjected to phytochemical screening for detecting the presence of compounds with therapeutic potential. Their relative antioxidant properties were evaluated using the reducing power and $DPPH^*$radical scavenging assay. Since most of the observed chemo-preventive potential invariably correlated with the amount of total phenolics present in the extract, their levels were quantified and identified by HPLC analysis. Correlation studies indicated a strong and significant (P<0.05) positive correlation of phenolic compounds with free radical scavenging potential. The results revealed that the extract was moderately cytotoxic to normal cells with a mean IC50 value of 52.4 ${\mu}g$ when compared with those obtained for cancerous cells (IC50 values of 29.2 ${\mu}g$ for MDA-MB-435S and 30.1 ${\mu}g$ for HaCaT respectively). The study confirms the presence of therapeutically active antineoplastic compounds in the n-butanolic leaf extract of $Annona$ $muricata$. Isolation of the active metabolites from the extract is in prospect.
Keywords
Antineoplastic; cytotoxicity in vitro; WRL 68; MDA MB 435S; HaCaT; cell lines;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Bekro YA, Jana A, Mamyrbekova B, et al (2007). Etude ethnobotanique et screening phytochimique de Caesalpina benthamiana (Bail) Herend et Zarucchi (Caesalpiniaceae). Science Nature, 4, 217-25.
2 Borris RP (1996). Natural product research. Perspective from a major Pharmaceutical company. J Ethnopharmacol, 51, 29-38.   DOI
3 Chabner, Roberts (2005). Timeline: Chemotherapy and the war on cancer. Nat Rev Cancer, 5, 65-72.   DOI   ScienceOn
4 Dohou N, Yamni K, Tahrouch S, et al (2003). Screening phytochimique dune endemique Libero- Marocaine, Thymelaea luthroides. Bull Pharm Bordeau, 142, 61-8.
5 Fortunato E A, McElroy A K, Sanchez I, et al (2000). Exploitation of cellular signaling and regulatory pathways by human cytomegalovirus. Trends Microbiol, 8, 111-9.   DOI
6 Gali-Muhtasib H, Bakkar N (2002). Modulating cell cycle: current applications and future prospects for future drug development. Curr. Cancer Drug Targets, 2, 1-17.   DOI
7 Gouemo NP, Yasuda RP, Morad M, et al (2003). Audiogenic seizure alters the expression of calcium and potassium channel protein in inferior colliculus neurons of the genetically epilepsy-prone rat (GEPR-3). Abs Soc Neurosci Program, ?, 212-20.
8 Gulcin I, Oktay M, Kirecci E, et al (2003). Screening of antioxidant and antimicrobial activities of anise (Pimpinella anisum L.) seed extracts. Food Chem, 83, 371-82.   DOI   ScienceOn
9 Hansakul P, Ngamkitidechakul C, Ingkaninan K, et al (2009). Antiproliferative, apoptotic induction, and antiinvasive effects of Leersia hexandra (L.) Sw, Panicum repens Linn, and Brachiaria mutica (Forsk.) Stapf extracts on human cancer cells. J Sci Technol, 31, 79-84.
10 Hill AF (1952). Economic Botany. A textbook of useful plants and plant products. 2nd edn. McGarw-Hill Book Company Inc, New York.
11 Koleva, Van Beek TA, Linssen JPH, et al (2002). Screening of plant extracts for antioxidant activity: a comparative study on three testing methods. Phytochemical Analysis, 13, 8-17.   DOI   ScienceOn
12 Liaw CC, Change FR, Lin CY, et al (2002). New cytotoxic monotetrahydrofuran annonaceous acetogenins from Annona muricata. J Nat Prod, 65, 470-5.   DOI
13 Lister E, Wilson P (2001). Measurement of total phenolics and ABTS assay for antioxidant activity (personal communication). Crop Research Institute, Lincoln, New Zealand.
14 Magadula JJ, Innocent E, Otiewo JN (2009). Mosquito larvicidal and cytotoxic activities of 3 Annona species and isolation of active principles. J Med Plants Res, 3, 674-80.
15 Nagamine MK, da Silva TC, Matsuzaki P, et al (2009). Cytotoxic effects of butanolic extract from Pfaffia paniculata (Brazilian Ginseng) on cultured human breast cancer cell line MCF-7. Experimental and toxicologic pathology, 61, 75-82.   DOI
16 Pardhasaradhi BV, Reddy M, Ali AM, et al (2005). Differential cytotoxic effects of Annona squamosa seed extracts on human tumour cell lines: Role of reactive oxygen species and glutathione. J Biosci, 30, 237-44.   DOI
17 Polterait O (1997). Antioxidants and free-radical scavengers of Natural Origin. Current Org. Chem, 1, 415-40.
18 Powis G (1983). Dose-dependent metabolism, therapeutic effect, and toxicity of anticancer drugs in man. Drug Metab Rev, 14, 1145-63.   DOI
19 Sakakibara H, Honda Y, Nakagawa S, et al (2003). Simultaneous determination of all polyphenols in vegetables, fruits, and teas. J of Agricultural and Food Chemistry, 51, 571-81.   DOI
20 Sameer Mehndiratta, Sunil Kumar, Ajay Kumar Meena, et al (2011). A Review on Plants a useful source of anti-cancer drugs. J of Pharmacy Research, 4, 264-71.
21 Shalini, Rachana Srivastava (2009). Antifungal activity screening and hplc analysis of crude extract from tectona grandis, shilajit, valeriana wallachi. EJEAFChe, 8, 218-29.
22 Siddhuraju P, Mohan PS, Becker K (2002). Studies on the antioxidant activity of Indian Laburnum (Cassia fistula L.): a preliminary assessment of crude extracts from stem bark, leaves, flowers and fruit pulp. Food Chem, 79, 61-7.   DOI   ScienceOn
23 Suresh Kumar, Suresh PK, Vijaybabu MR, et al (2006). Anticancer effects of ethanolic neem extract on prostate cancer cell line (PC-3). J of Ethnopharmacology, 105, 246-50.   DOI
24 Thatte U, Bagadey S, Dahanukar S (2000). Modulation of programmed cell death by medicinal plants. Molecular and cellular Biochemistry, 46, 199-214.
25 Velioglu YS, Mazza G, Gao L, et al (1998). Antioxidant activity and total phenolics in selected fruits, vegetables, and grain products. J of Agricultural and Food Chemistry, 46, 4113-7.   DOI   ScienceOn
26 Weislow R, Kiser DL, Fine J, et al (1989). New soluble-formazan assay for HIV-1 cytopathic effects: application to high-flux screening of synthetic and natural products for AIDSantiviral activity. J Natl Cancer Inst, 81, 577-86.   DOI
27 Ye F, Shen Z, Xie M (2002). Alpha glucosidase inhibition from a Chinese medicinal herb (Ramulus mori) in normal and diabetic rats and mice. Phytomedicine, 9, 161-6.   DOI
28 Yen GC, Duh PD, Tsai CL (1993). Relationship between antioxidant activity and maturity of peanut hulls. J Agr Food Chem, 41, 67-70.   DOI
29 Yu L, Haley S, Perret J, et al (2002). Free radical scavenging properties of wheat extracts. J of Agricultural and Food Chemistry, 50, 1619-24.   DOI   ScienceOn
30 Yildirim A, Mavi, Kara AA (2001). Determination of antioxidant and antimicrobial activities of Rumes crispus L. extracts. J Agr. Food Chem, 49, 4083-9.   DOI   ScienceOn
31 Yuan SS, Chang HL, Chen HW, et al (2003). Annonacin, a monotetrahydrofuran acetogenin, arrests cancer cells at the G1 phase and causes cytotoxicity in a Baxand caspase-3-related pathway. Life Sciences, 72, 2853-61.   DOI
32 Baskar R, Rajeswari V, Kumar TS (2007). In vitro antioxidant studies in leaves of Annona species. Indian J Exp Biol, 45, 480-5.