Browse > Article
http://dx.doi.org/10.7314/APJCP.2012.13.12.5937

Endocrine Disruptors and Breast Cancer Risk - Time to Consider the Environment  

Abdel-Rahman, Wael M. (Department of Medical Laboratory Sciences, College of Medicine, University of Sharjah)
Moustafa, Yasser M. (Department of Pharmacology, College of Pharmacy, Suez Canal University)
Ahmed, Bassamat O. (Department of Nursing, College of Health Sciences, College of Medicine, University of Sharjah)
Mostafa, Randa M. (Department of Basic Medical Sciences, College of Medicine, University of Sharjah)
Publication Information
Asian Pacific Journal of Cancer Prevention / v.13, no.12, 2012 , pp. 5937-5946 More about this Journal
Abstract
The term endocrine disruptors is used to describe a variety of natural and manmade substances that have the capacity to potentially interfere with and modify the normal physiology of endocrine system either by mimicking, blocking or modulating the actions of natural endogenous hormones. The rising incidence of breast cancer over the last 50 years and the documented higher incidence in urban as compared to rural areas suggest a relationship to the introduction and increased use of xenoestrogens in our environment. The literature has developed over the last decades where initial experiments on endocrine disruptors did not support an involvement in breast cancer, and then evidence mounted implicating various environmental factors including hormones, endocrine disrupting chemicals and non-endocrine disrupting environmental carcinogens in the pathogenesis of breast cancer. Available data support the hypothesis that exposure to endocrine disruptors in utero leaves a signature on mammary gland morphogenesis so that the resulting dysgenic gland becomes more predisposed to develop tumors upon exposures to additional insults later on during life. Exceptionally, exposure to phytoestrogens could be beneficial to human health. Most of the available data are from well developed countries while the developing countries are still understudied regarding these issues. Here, we raise a note of caution about potential role of environmental toxins including endocrine disruptors in breast cancer development and call for serious measures to be taken by all involved parties in the developing world.
Keywords
Bisphenol A; breast cancer; endocrine disruptors; estrogen; phytoestrogens; soy;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Skinner MK, Manikkam M, Guerrero-Bosagna C (2010). Epigenetic transgenerational actions of environmental factors in disease etiology. Trends Endocrinol Metab, 21, 214-22.   DOI   ScienceOn
2 Skinner MK, Manikkam M, Guerrero-Bosagna C (2011). Epigenetic transgenerational actions of endocrine disruptors. Reprod Toxicol, 31, 337-43.   DOI   ScienceOn
3 Soto AM, Maffini MV, Sonnenschein C (2008). Neoplasia as development gone awry: the role of endocrine disruptors. Int J Androl, 31, 288-93.   DOI   ScienceOn
4 Speirs V, Walker RA (2007). New perspectives into the biological and clinical relevance of oestrogen receptors in the human breast. J Pathol, 211, 499-506.   DOI   ScienceOn
5 Takahashi S, Chi XJ, Yamaguchi Y, et al (2001). Mutagenicity of bisphenol A and its suppression by interferon-alpha in human RSa cells. Mutat Res, 490, 199-207.   DOI   ScienceOn
6 Takeshita A, Koibuchi N, Oka J, et al (2001). Bisphenol-A, an environmental estrogen, activates the human orphan nuclear receptor, steroid and xenobiotic receptor-mediated transcription. Eur J Endocrinol, 145, 513-7.   DOI   ScienceOn
7 Taylor RT, Wang F, Hsu EL, et al (2009). Roles of coactivator proteins in dioxin induction of CYP1A1 and CYP1B1 in human breast cancer cells. Toxicol Sci, 107, 1-8.
8 Toppari J, Larsen JC, Christiansen P, et al (1996). Male reproductive health and environmental xenoestrogens. Environ Hlth Perspect, 104, 741-803.   DOI
9 Montales MT, Rahal OM, Kang J, et al (2012). Repression of mammosphere formation of human breast cancer cells by soy isoflavone genistein and blueberry polyphenolic acids suggests diet-mediated targeting of cancer stem-like/ progenitor cells. Carcinogenesis, 33, 652-60.   DOI   ScienceOn
10 Mostafa RM, Mirghani z, moustafa KM, et al (2007). New chapter in old story : Endocrine disruptos and male reproductive system. JMSR, 2, 33-42.
11 Munoz-de-Toro M, Markey CM, Wadia PR, et al (2005). Perinatal exposure to bisphenol-A alters peripubertal mammary gland development in mice. Endocrinology, 146, 4138-47.   DOI   ScienceOn
12 Murray TJ, Maffini MV, Ucci AA, et al (2007). Induction of mammary gland ductal hyperplasias and carcinoma in situ following fetal bisphenol A exposure. Reprod Toxicol, 23, 383-90.   DOI   ScienceOn
13 Ndahi H (2000). The new world of plastics. The Technology Teacher, 16, 18-22.
14 Nieminen TT, Shoman S, Eissa S, et al (2012). Distinct genetic and epigenetic signatures of colorectal cancers according to ethnic origin. Cancer Epidemiol Biomarkers Prev, 21, 202-11.   DOI   ScienceOn
15 Paech K, Webb P, Kuiper GG, et al (1997). Differential ligand activation of estrogen receptors ERalpha and ERbeta at AP1 sites. Science, 277, 1508-10.   DOI
16 Palmer JR, Hatch EE, Rosenberg CL, et al (2002). Risk of breast cancer in women exposed to diethylstilbestrol in utero: prelimiinary results (United States). Cancer Causes Control, 13, 753-8.   DOI   ScienceOn
17 Palmer JR, Wise LA, Hatch EE, et al (2006). Prenatal diethylstilbestrol exposure and risk of breast cancer. Cancer Epidemiol Biomarkers Prev, 15, 1509-14.   DOI   ScienceOn
18 Parkin DM, Fernandez LM (2006). Use of statistics to assess the global burden of breast cancer. Breast J, 12, 70-80.   DOI   ScienceOn
19 Patisaul HB, Adewale HB (2009). Long-term effects of environmental endocrine disruptors on reproductive physiology and behavior. Front Behav Neurosci, 3, 10.
20 Petrakis NL, Barnes S, King EB, et al (1996). Stimulatory influence of soy protein isolate on breast secretion in preand postmenopausal women. Cancer Epidemiol Biomarkers Prev, 5, 785-94.
21 Pike MC, Spicer DV, Dahmoush L, et al (1993). Estrogens, progestogens, normal breast cell proliferation, and breast cancer risk. Epidemiol Rev, 15, 17-35.
22 Powell E, Shanle E, Brinkman A, et al (2012). Identification of estrogen receptor dimer selective ligands reveals growthinhibitory effects on cells that co-express ERalpha and ERbeta. PLoS One, 7, 30993.   DOI
23 Quesada I, Fuentes E, Viso-Leon MC, et al (2002). Low doses of the endocrine disruptor bisphenol-A and the native hormone 17beta-estradiol rapidly activate transcription factor CREB. Faseb J, 16, 1671-3.
24 Rajah TT, Du N, Drews N, et al (2009). Genistein in the presence of 17beta-estradiol inhibits proliferation of ERbeta breast cancer cells. Pharmacology, 84, 68-73.   DOI   ScienceOn
25 Kim HS, Han SY, Yoo SD, et al (2001). Potential estrogenic effects of bisphenol-A estimated by in vitro and in vivo combination assays. J Toxicol Sci, 26, 111-8.   DOI   ScienceOn
26 Klein CB, King AA (2007). Genistein genotoxicity: critical considerations of in vitro exposure dose. Toxicol Appl Pharmacol, 224, 1-11.   DOI   ScienceOn
27 Korde LA, Wu AH, Fears T, et al (2009). Childhood soy intake and breast cancer risk in Asian American women. Cancer Epidemiol Biomarkers Prev, 18, 1050-9.   DOI   ScienceOn
28 Kortenkamp A (2011). Are cadmium and other heavy metal compounds acting as endocrine disrupters? Met Ions Life Sci, 8, 305-17.
29 Krishnan AV, Stathis P, Permuth SF, et al (1993). Bisphenol-A: an estrogenic substance is released from polycarbonate flasks during autoclaving. Endocrinology, 132, 2279-86.   DOI   ScienceOn
30 Kuiper GG, Lemmen JG, Carlsson B, et al (1998). Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor beta. Endocrinology, 139, 4252-63.   DOI   ScienceOn
31 Lampe JW, Nishino Y, Ray RM, et al (2007). Plasma isoflavones and fibrocystic breast conditions and breast cancer among women in Shanghai, China. Cancer Epidemiol Biomarkers Prev, 16, 2579-86.   DOI   ScienceOn
32 LaPensee EW, LaPensee CR, Fox S, et al (2010). Bisphenol A and estradiol are equipotent in antagonizing cisplatininduced cytotoxicity in breast cancer cells. Cancer Lett, 290, 167-73.   DOI   ScienceOn
33 Lapensee EW, Tuttle TR, Fox SR, et al (2009). Bisphenol A at low nanomolar doses confers chemoresistance in estrogen receptor-alpha-positive and -negative breast cancer cells. Environ Hlth Perspect, 117, 175-80.   DOI
34 Lattrich C, Lubig J, Springwald A, et al (2011). Additive effects of trastuzumab and genistein on human breast cancer cells. Anticancer Drugs, 22, 253-61.   DOI   ScienceOn
35 Mahady GB, Parrot J, Lee C, et al (2003). Botanical dietary supplement use in peri- and postmenopausal women. Menopause, 10, 65-72.
36 Mai Z, Blackburn GL, Zhou JR (2007). Soy phytochemicals synergistically enhance the preventive effect of tamoxifen on the growth of estrogen-dependent human breast carcinoma in mice. Carcinogenesis, 28, 1217-23.   DOI   ScienceOn
37 Maizlish N, Moses M (1990). Fieldworker exposure to pesticides. J Occup Med, 32, 90-4.
38 Markey CM, Coombs MA, Sonnenschein C, et al (2003). Mammalian development in a changing environment: exposure to endocrine disruptors reveals the developmental plasticity of steroid-hormone target organs. Evol Dev, 5, 67-75.   DOI   ScienceOn
39 Markey CM, Luque EH, Munoz De Toro M, et al (2001). In utero exposure to bisphenol A alters the development and tissue organization of the mouse mammary gland. Biol Reprod, 65, 1215-23.
40 Metzler M (1981). The metabolism of diethylstilbestrol. CRC Crit Rev Biochem, 10, 171-212.   DOI
41 Molzberger AF, Vollmer G, Hertrampf T, et al (2012). In utero and postnatal exposure to isoflavones results in a reduced responsivity of the mammary gland towards estradiol. Mol Nutr Food Res, 56, 399-409.   DOI   ScienceOn
42 Guha N, Kwan ML, Quesenberry CP, et al (2009). Soy isoflavones and risk of cancer recurrence in a cohort of breast cancer survivors: the life after cancer epidemiology study. Breast Cancer Res Treat, 118, 395-405.   DOI   ScienceOn
43 Harner T, Shoeib M, Diamond M, et al (2004). Using passive air samplers to assess urban-rural trends for persistent organic pollutants. 1. Polychlorinated biphenyls and organochlorine pesticides. Environ Sci Technol, 38, 4474-83.   DOI   ScienceOn
44 Herbst AL, Ulfelder H, Poskanzer DC (1971). Adenocarcinoma of the vagina. Association of maternal stilbestrol therapy with tumor appearance in young women. N Engl J Med, 284, 878-81.   DOI   ScienceOn
45 Hoover RN, Hyer M, Pfeiffer RM, et al (2011). Adverse health outcomes in women exposed in utero to diethylstilbestrol. N Engl J Med, 365, 1304-14.   DOI   ScienceOn
46 Hwang CS, Kwak HS, Lim HJ, et al (2006). Isoflavone metabolites and their in vitro dual functions: they can act as an estrogenic agonist or antagonist depending on the estrogen concentration. J Steroid Biochem Mol Biol, 101, 246-53.   DOI   ScienceOn
47 Ibarluzea Jm J, Fernandez MF, Santa-Marina L, et al (2004). Breast cancer risk and the combined effect of environmental estrogens. Cancer Causes Control, 15, 591-600.   DOI
48 Iso T, Watanabe T, Iwamoto T, et al (2006). DNA damage caused by bisphenol A and estradiol through estrogenic activity. Biol Pharm Bull, 29, 206-10.   DOI   ScienceOn
49 Iwasaki M, Inoue M, Otani T, et al (2008). Plasma isoflavone level and subsequent risk of breast cancer among Japanese women: a nested case-control study from the Japan public health center-based prospective study group. J Clin Oncol, 26, 1677-83.   DOI   ScienceOn
50 Izzotti A, Kanitz S, D'Agostini F, et al (2009). Formation of adducts by bisphenol A, an endocrine disruptor, in DNA in vitro and in liver and mammary tissue of mice. Mutat Res, 679, 28-32.   DOI   ScienceOn
51 Izzotti A, Longobardi M, Cartiglia C, et al (2010). Pharmacological modulation of genome and proteome alterations in mice treated with the endocrine disruptor bisphenol A. Curr Cancer Drug Targets, 10, 147-54.   DOI   ScienceOn
52 Ju YH, Allred KF, Allred CD, et al (2006). Genistein stimulates growth of human breast cancer cells in a novel, postmenopausal animal model, with low plasma estradiol concentrations. Carcinogenesis, 27, 1292-9.   DOI   ScienceOn
53 Ju YH, Doerge DR, Allred KF, et al (2002). Dietary genistein negates the inhibitory effect of tamoxifen on growth of estrogen-dependent human breast cancer (MCF-7) cells implanted in athymic mice. Cancer Res, 62, 2474-7.
54 Ju YH, Doerge DR, Woodling KA, et al (2008). Dietary genistein negates the inhibitory effect of letrozole on the growth of aromatase-expressing estrogen-dependent human breast cancer cells (MCF-7Ca) in vivo. Carcinogenesis, 29, 2162-8.   DOI   ScienceOn
55 Khan SA, Chatterton RT, Michel N, et al (2011). Soy isoflavone supplementation for breast cancer risk reduction: a randomized phase II trial. Cancer Prev Res (Phila), 5, 309-19.
56 Darbre PD, Byford JR, Shaw LE, et al (2002). Oestrogenic activity of isobutylparaben in vitro and in vivo. J Appl Toxicol, 22, 219-26.   DOI   ScienceOn
57 Davis DL, Bradlow HL, Wolff M, et al (1993). Medical hypothesis: xenoestrogens as preventable causes of breast cancer. Environ Hlth Perspect, 101, 372-7.   DOI   ScienceOn
58 Dong JY, Qin LQ (2011). Soy isoflavones consumption and risk of breast cancer incidence or recurrence: a meta-analysis of prospective studies. Breast Cancer Res Treat, 125, 315-23.   DOI   ScienceOn
59 Dey S, Soliman AS, Hablas A, et al (2010). Urban-rural differences in breast cancer incidence in Egypt (1999-2006). Breast, 19, 417-23.   DOI   ScienceOn
60 Diamanti-Kandarakis E, Bourguignon JP, Giudice LC, et al (2009). Endocrine-disrupting chemicals: an Endocrine Society scientific statement. Endocr Rev, 30, 293-342.   DOI   ScienceOn
61 Dong S, Terasaka S, Kiyama R (2011). Bisphenol A induces a rapid activation of Erk1/2 through GPR30 in human breast cancer cells. Environ Pollut, 159, 212-8.   DOI   ScienceOn
62 Du M, Yang X, Hartman JA, et al (2012). Low-dose dietary genistein negates the therapeutic effect of tamoxifen in athymic nude mice. Carcinogenesis, 33, 895-901.   DOI   ScienceOn
63 Durando M, Kass L, Perdomo V, et al (2011). Prenatal exposure to bisphenol A promotes angiogenesis and alters steroidmediated responses in the mammary glands of cycling rats. J Steroid Biochem Mol Biol, 127, 35-43.   DOI
64 Durando M, Kass L, Piva J, et al (2007). Prenatal bisphenol A exposure induces preneoplastic lesions in the mammary gland in Wistar rats. Environ Hlth Perspect, 115, 80-6.   DOI
65 Ekbom A, Trichopoulos D, Adami HO, et al (1992). Evidence of prenatal influences on breast cancer risk. Lancet, 340, 1015-8.   DOI   ScienceOn
66 El Saghir NS, Khalil MK, Eid T, et al (2007). Trends in epidemiology and management of breast cancer in developing Arab countries: a literature and registry analysis. Int J Surg, 5, 225-33.   DOI   ScienceOn
67 Gray J, Evans N, Taylor B, et al (2009). State of the evidence: the connection between breast cancer and the environment. Int J Occup Environ Hlth, 15, 43-78.   DOI   ScienceOn
68 Goodman MT, Shvetsov YB, Wilkens LR, et al (2009). Urinary phytoestrogen excretion and postmenopausal breast cancer risk: the multiethnic cohort study. Cancer Prev Res (Phila), 2, 887-94.   DOI   ScienceOn
69 Gould JC, Leonard LS, Maness SC, et al (1998). Bisphenol A interacts with the estrogen receptor alpha in a distinct manner from estradiol. Mol Cell Endocrinol, 142, 203-14.   DOI   ScienceOn
70 Grace PB, Taylor JI, Low YL, et al (2004). Phytoestrogen concentrations in serum and spot urine as biomarkers for dietary phytoestrogen intake and their relation to breast cancer risk in European prospective investigation of cancer and nutrition-norfolk. Cancer Epidemiol Biomarkers Prev, 13, 698-708.
71 Greenberg ER, Barnes AB, Resseguie L, et al (1984). Breast cancer in mothers given diethylstilbestrol in pregnancy. N Engl J Med, 311, 1393-8.   DOI   ScienceOn
72 Allred CD, Ju YH, Allred KF, et al (2001b). Dietary genistin stimulates growth of estrogen-dependent breast cancer tumors similar to that observed with genistein. Carcinogenesis, 22, 1667-73.   DOI
73 Andres S, Abraham K, Appel KE, et al (2011). Risks and benefits of dietary isoflavones for cancer. Crit Rev Toxicol, 41, 463-506.   DOI   ScienceOn
74 Barker DJ, Eriksson JG, Forsen T, et al (2002). Fetal origins of adult disease: strength of effects and biological basis. Int J Epidemiol, 31, 1235-9.   DOI   ScienceOn
75 Becker K, Goen T, Seiwert M, et al (2009). GerES IV: phthalate metabolites and bisphenol A in urine of German children. Int J Hyg Environ Hlth, 212, 685-92.   DOI   ScienceOn
76 Brede C, Fjeldal P, Skjevrak I, et al (2003). Increased migration levels of bisphenol A from polycarbonate baby bottles after dishwashing, boiling and brushing. Food Addit Contam, 20, 684-9.   DOI   ScienceOn
77 Bosviel R, Dumollard E, Dechelotte P, et al (2012). Can soy phytoestrogens decrease DNA methylation in BRCA1 and BRCA2 oncosuppressor genes in breast cancer? Omics, 16, 235-44.   DOI   ScienceOn
78 Boylan ES, Calhoon RE (1979). Mammary tumorigenesis in the rat following prenatal exposure to diethylstilbestrol and postnatal treatment with 7, 12-dimethylbenz[a]anthracene. J Toxicol Environ Hlth, 5, 1059-71.   DOI   ScienceOn
79 Bray F, McCarron P, Parkin DM (2004). The changing global patterns of female breast cancer incidence and mortality. Breast Cancer Res, 6, 229-39.   DOI   ScienceOn
80 Byford JR, Shaw LE, Drew MG, et al (2002). Oestrogenic activity of parabens in MCF7 human breast cancer cells. J Steroid Biochem Mol Biol, 80, 49-60.   DOI   ScienceOn
81 Calafat AM, Ye X, Wong LY, et al (2008). Exposure of the U.S. population to bisphenol A and 4-tertiary-octylphenol: 2003- 2004. Environ Hlth Perspect, 116, 39-44.
82 Canderelli R, Leccesse LA, Miller NL, et al (2007). Benefits of hormone replacement therapy in postmenopausal women. J Am Acad Nurse Pract, 19, 635-41.   DOI   ScienceOn
83 Chang EC, Charn TH, Park SH, et al (2008). Estrogen Receptors alpha and beta as determinants of gene expression: influence of ligand, dose, and chromatin binding. Mol Endocrinol, 22, 1032-43.   DOI   ScienceOn
84 Cohn BA, Wolff MS, Cirillo PM, et al (2007). DDT and breast cancer in young women: new data on the significance of age at exposure. Environ Hlth Perspect, 115, 1406-14.
85 Crain DA, Eriksen M, Iguchi T, et al (2007). An ecological assessment of bisphenol-A: evidence from comparative biology. Reprod Toxicol, 24, 225-39.   DOI   ScienceOn
86 Abdel-Rahman WM (2008). Genomic instability and carcinogenesis: an update. Curr Genomics, 9, 535-41.   DOI   ScienceOn
87 Cravedi JP, Zalko D, Savouret JF, et al (2007). [The concept of endocrine disruption and human health]. Med Sci (Paris), 23, 198-204.   DOI   ScienceOn
88 Crews D, Willingham E, Skipper JK (2000). Endocrine disruptors: present issues, future directions. Q Rev Biol, 75, 243-60.   DOI   ScienceOn
89 Crisp TM, Clegg ED, Cooper RL, et al (1998). Environmental endocrine disruption: an effects assessment and analysis. Environ Hlth Perspect, 106, 11-56.   DOI
90 Adams NR (1995). Detection of the effects of phytoestrogens on sheep and cattle. J Anim Sci, 73, 1509-15.
91 Allred CD, Allred KF, Ju YH, et al (2001a). Soy diets containing varying amounts of genistein stimulate growth of estrogendependent (MCF-7) tumors in a dose-dependent manner. Cancer Res, 61, 5045-50.
92 Vandenberg LN, Maffini MV, Wadia PR, et al (2007). Exposure to environmentally relevant doses of the xenoestrogen bisphenol-A alters development of the fetal mouse mammary gland. Endocrinology, 148, 116-27.   DOI
93 Tsutsui T, Tamura Y, Suzuki A, et al (2000). Mammalian cell transformation and aneuploidy induced by five bisphenols. Int J Cancer, 86, 151-4.   DOI   ScienceOn
94 Tsutsui T, Tamura Y, Yagi E, et al (1998). Bisphenol-A induces cellular transformation, aneuploidy and DNA adduct formation in cultured Syrian hamster embryo cells. Int J Cancer, 75, 290-4.   DOI   ScienceOn
95 van Duursen MB, Nijmeijer SM, de Morree ES, et al (2011). Genistein induces breast cancer-associated aromatase and stimulates estrogen-dependent tumor cell growth in in vitro breast cancer model. Toxicology, 289, 67-73.   DOI
96 Watson CS, Alyea RA, Jeng YJ, et al (2007a). Nongenomic actions of low concentration estrogens and xenoestrogens on multiple tissues. Mol Cell Endocrinol, 274, 1-7.   DOI
97 Viel JF, Clement MC, Hagi M, et al (2008). Dioxin emissions from a municipal solid waste incinerator and risk of invasive breast cancer: a population-based case-control study with GIS-derived exposure. Int J Hlth Geogr, 7, 4.   DOI   ScienceOn
98 vom Saal FS, Akingbemi BT, Belcher SM, et al (2007). Chapel Hill bisphenol A expert panel consensus statement: integration of mechanisms, effects in animals and potential to impact human health at current levels of exposure. Reprod Toxicol, 24, 131-8.   DOI   ScienceOn
99 Ward H, Chapelais G, Kuhnle GG, et al (2008). Breast cancer risk in relation to urinary and serum biomarkers of phytoestrogen exposure in the European Prospective into Cancer-Norfolk cohort study. Breast Cancer Res, 10, 32.
100 Watson CS, Bulayeva NN, Wozniak AL, et al (2007b). Xenoestrogens are potent activators of nongenomic estrogenic responses. Steroids, 72, 124-34.   DOI   ScienceOn
101 Wittassek M, Heger W, Koch HM, et al (2007). Daily intake of di(2-ethylhexyl)phthalate (DEHP) by German children -- A comparison of two estimation models based on urinary DEHP metabolite levels. Int J Hyg Environ Hlth, 210, 35-42.   DOI   ScienceOn
102 Xiao CW (2008). Health effects of soy protein and isoflavones in humans. J Nutr, 138, 1244-9.
103 Yoonessi M, Mariniello DA, Wieckowska WS, et al (1981). DES story: review and report. NY State J Med, 81, 195-8.
104 Yurino H, Ishikawa S, Sato T, et al (2004). Endocrine disruptors (environmental estrogens) enhance autoantibody production by B1 cells. Toxicol Sci, 81, 139-47.   DOI   ScienceOn
105 Sahin K, Tuzcu M, Sahin N, et al (2011). Inhibitory effects of combination of lycopene and genistein on 7,12- dimethyl benz(a)anthracene-induced breast cancer in rats. Nutr Cancer, 63, 1279-86.   DOI   ScienceOn
106 Ziegler RG, Hoover RN, Pike MC, et al (1993). Migration patterns and breast cancer risk in Asian-American women. J Natl Cancer Inst, 85, 1819-27.   DOI   ScienceOn
107 Richter CA, Birnbaum LS, Farabollini F, et al (2007). In vivo effects of bisphenol A in laboratory rodent studies. Reprod Toxicol, 24, 199-224.   DOI   ScienceOn
108 Rubin MM (2007). Antenatal exposure to DES: lessons learned... future concerns. Obstet Gynecol Surv, 62, 548-55.   DOI   ScienceOn
109 Sanderson T (2011). The steroid hormone biosynthesis pathway as a target for endocrine chemicals. Toxicological Sci, 94, 3-21.
110 Santell RC, Chang YC, Nair MG, et al (1997). Dietary genistein exerts estrogenic effects upon the uterus, mammary gland and the hypothalamic/pituitary axis in rats. J Nutr, 127, 263-9.
111 Seo HS, Choi HS, Choi HS, et al (2011). Phytoestrogens induce apoptosis via extrinsic pathway, inhibiting nuclear factorkappaB signaling in HER2-overexpressing breast cancer cells. Anticancer Res, 31, 3301-13.
112 Setchell KD, Brown NM, Zhao X, et al (2011). Soy isoflavone phase II metabolism differs between rodents and humans: implications for the effect on breast cancer risk. Am J Clin Nutr, 94, 1284-94.   DOI   ScienceOn
113 Setchell KD, Gosselin SJ, Welsh MB, et al (1987). Dietary estrogens--a probable cause of infertility and liver disease in captive cheetahs. Gastroenterology, 93, 225-33.
114 Shu XO, Zheng Y, Cai H, et al (2009). Soy food intake and breast cancer survival. Jama, 302, 2437-43.   DOI   ScienceOn