Browse > Article
http://dx.doi.org/10.5695/JSSE.2022.55.4.222

Effect of benzothiazole additives and properties of copper foils on high current density  

Woo, Tae-Gyu (Graduate School of Flexible and Printable Electronics, Jeonbuk National University)
Kang, Byeoung-Jae (Metallurgy Engineering, Jeonbuk National University)
Park, Jong-Jae (Metallurgy Engineering, Jeonbuk National University)
Park, Il-Song (Metallurgy Engineering, Jeonbuk National University)
Publication Information
Journal of the Korean institute of surface engineering / v.55, no.4, 2022 , pp. 222-230 More about this Journal
Abstract
The electroplating for copper foils has many advantages in economics. During the electroplating, the selection of appropriate additives is needed to manufacture copper foils with various properties. Therefore, it is investigated the initial plating voltage and the properties of copper foil electroplated in the electrolyte with benzothiazole as additives. The addition of benzothiazole without any additives decreased effectively the initial plating voltage. However, the initial voltage increased when the additives was used in combination with an inhibitor and a leveler along with benzothiazole. Moreover, the voltage tends to increase with the concentration of benzothiazole except for 40 ppm group. The mixed additives could change not only the initial voltage but also the morphology of crystals on the surface. When benzothiazole is added at 20 ppm or less, it was observed that the clustered crystals existed on the surface, which result in ununiform surface and high roughness value. In addition, the grain size increased with the amount of benzothiazole, but the resistivity decreased. However, when the leveler was added in 20 ppm, the grain size was decreased with the amount of benzothiazole. The size of the crystals could be influenced by the mixing ratio of additives. Therefore, it is necessary to study on the effect of concentration ratio of additives in the future.
Keywords
benzothiazole; copper foil; electroplating; surface roughness; additives;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 B. S. Min, W. S. Chung, I. G. Kim, Effect of frequency on properties of film in Cu electroplating using square pulse current, J. Kor. Inst. Met. & Mater., 40 (2002) 1281-1286.
2 S. H. Lee, N. J. Park, Effect of film thckness and annealing temperature on twin formation and annealing testure of Cu films, J. Kor. Inst. Met. & Mater., 45 (2007) 377-382.
3 T. G. Woo, The effects of bis(3-Sulfo-Propyl)di-sulfide (SPS) additives on the surface morphology and mechanical properties of electrolytic copper foil, Korean. J. Met. Mater., 54 (2016) 681-687.   DOI
4 T. G. Woo, I. S. Park, Changes in electrical properties of copper-plated layer by organic additives on high current density, Korean. J. Met. Mater., 58 (2020) 41-48.   DOI
5 C. C. Hu, C. M. Wu, Effects of deposition modes on the microstructure of copper deposits from an acidic sulfate bath, Surf. Coat. Tech., 176 (2003) 75-83.   DOI
6 N. Ikemiya, S. Miyaoko, S. Hara, In situ observations of the initial stage of electrodeposition of Cu on Au(100) from an aqueous sulfuric acid solution using atomic force microscopy, Surf. Sci., 327 (1995) 261-273.   DOI
7 C. M. Park, U. H. Lee, H. J. Lee, Control of impurity concentrations in copper electrodeposits by using an organic additive, Korean. J. Met. Mater., 54 (2016) 469-474.   DOI
8 Z. Zhou, T. J. O'Keefe, Electrodeposition of copper on thermally oxidized 316 L stainless steel substrates, J. Appl. Electroch., 28 (1998) 461-469.   DOI
9 M. L. Sartorelli, A. Q. Schervenski, R. G. Delatorre, P. Klauss, Cu-Ni thin films electrodeposited on Si: composition and current efficiency, Phys. Stat. Sol., 187 (2001) 91-95.   DOI
10 H. C. Kim, J. J. Kim, Through-silicon-via filling process using Cu electrodeposition, Kor. Chem. Eng. Res. 54 (2016) 723-733.   DOI
11 S. K. Kim, J. J. Kim, Superfilling evolution in Cu electrodeposition: dependence on the aging time of the accelerator, Electrochem. Solid-State Lett., 7 (2004) C98.
12 S. Choe, M. J. Kim, H. C. Kim, S. K. Cho, S. H. Ahn, S. K. Kim, J. J. Kim, Degradation of bis(3-sulfopropyl) disulfide and its influence on copper electrodeposition for feature filling, J. Electrochem. Soc., 160 (2013) D3179.
13 J. J. Yang, Y. L. Huang, K. W. Xu, Effect of substrate on surface morphology evolution of Cu thin films deposited by magnetron sputtering, Surf. Coat. Technol., 201 (2007) 5574-5577.   DOI
14 M. H. Kim, H. R. Cha, C. S. Choi, H. S. Kim, D. Y. Lee, Effects of gelatin additives on the microstructures and corrosion properties of electrodeposited Cu thin films, Korean J. Met. Mater., 48 (2010) 757-764.   DOI
15 M. H. Kim, H. R. Cha, C. S. Choi, J. M. Kim, D. Y. Lee, The influence of gelatin additives on the mechanical properties of electrodeposited Cu thin films, Korean. J. Met. Mater., 48 (2010) 884-892.   DOI
16 T. G. Woo, J. J. Park, I. S. Park, Initial behavior of additives and mechanical properties of copper foils on high current density, Korean J. Met. Mater., 59 (2021) 304-313.   DOI
17 T. G. Woo, I. S. Park, K. H. Jung, K. S. Son, R. Song, M. H. Lee, Y. K. Hwang, K. W. Seol, The influence of additives on the mechanical properties of electrodeposited copper foils, Korean J. Met. Mater., 50 (2012) 237-242.   DOI
18 P. V. Brande, R. Winand, Nucleation and initial growth of copper electrodeposits under galvanostatic conditions, Surf. Coat. Technol., 52 (1992) 1-7.   DOI
19 D. J. Park, Master Thesis(in Korean), Effect of solution type and additives on morphology of electrodeposition dendritic Cu powder, Pusan National University, Pusan (2017) p. 24.
20 S. K. Cho, S. K. Kim, J. J. Kim, Superconformal Cu electrodeposition using DPS: a substitutive accelerator for Bis(3-sulfopropyl) disulfide, J. Electrochem. Soc., 152 (2005) C330.
21 S. H. Lee, N. J. Park, Texture evolution according to the film thikness of anneaed Cu films deposited by sputtering and electro-deposition, J. Kor. Inst. Met. & Mater., 44 (2006) 556-561.
22 T. G. Woo, I. S. Park, Effects of JGB additives on the microstructures and electrical properties of electroplated copper foil, Korean J. Met. Mater., 59 (2021) 404-411.   DOI
23 L. Bonou, M. Eyraud, R. Denoyel Y. Massiani, Influence of additives on Cu electrodeposition mechanisms in acid solution: direct current study supported by non-electrochemical measurements, Electrochim. Acta, 47 (2002) 4139-4148.   DOI
24 S. Yoshimura, S. Yoshihara, T. Shirakashi, E. Sato, Preferred orientation and morphology of electrodeposited iron from iron(II) chloride solution, Electrochim. Acta, 39 (1994) 589-595.   DOI
25 M. H. Lee, E. K. Park, T. G. Woo, I. S. Park, Y. M. Yoon, K. W. Seol, The effect of various electrolyte concentrations on surface and electrical characteristic of the copper deposition layer at anodizing of titanium anode, J. Kor. Inst. Met. & Mater., 46 (2008) 747-754.
26 J. W. Gallaway, M. J. Willey, A. C. West, Copper filling of 100 nm trenches using PEG, PPG, and a triblock copolymer as plating suppressors, J. Electrochem. Soc., 156 (2009) D287.
27 Y. Cao, P. Taephaisitphongse, R. Chalupa, A. C. West, Three-additive model of superfilling of copper, J. Electrochem. Soc., 148 (2001) C466.
28 S. K. Kim, D. Josell, T. P. Moffat, electrodeposition of Cu in the PEI-PEG-Cl-SPS additive system: reduction of overfill bump formation during superfilling, J. Electrochem. Soc., 153 (2006) C616.
29 Y. H. Jeong, Master's Thesis(in Korean), Influence of organic additives and microstructure on thickness uniformity and undercut for PCB copper electrodeposits, Dong-A National University, Busan (2017) 27-37.
30 M. H. Lee, J. K. Cho, A study on the additive decomposition generated during the via-filling process, J. Kor. Inst. Surf. Eng., 46 (2013) 153-157.   DOI
31 S. H, Huh, H. J. Jeon, H. S. Soo, Y. S. Song, S. K. Lee, H. J. Lee, U. H. Lee, Effect of microstructural evolution on electrical properties of the copper electrodeposits for ULSI, Korean J. Met. Mater., 52 (2014) 943-948.   DOI
32 B. D. Cullity, S. R. Stock, Elements of X-ray diffraction, third ed., Pearson Education, New Jersey (2001) 170.