Browse > Article
http://dx.doi.org/10.5695/JSSE.2022.55.1.18

The effect of Na2MoO4 addition on the formation and corrosion resistance of Cr-electroplated layer of low carbon steel  

Bae, Ki Chang (Department of Metallurgical Engineering, Pukyong Nationa University)
Kim, Kiwook (Department of Metallurgical Engineering, Pukyong Nationa University)
Kim, Juho (Department of Metallurgical Engineering, Pukyong Nationa University)
Lee, Junghoon (Department of Metallurgical Engineering, Pukyong Nationa University)
Publication Information
Journal of the Korean institute of surface engineering / v.55, no.1, 2022 , pp. 18-23 More about this Journal
Abstract
Presence of cracks in electrodeposited hard chromium layer, which provide a path of corrosive media to steel substrate, is a serious issue in metal finishing with chromium electroplating. In this study, we added sodium molybdate in an electrolyte for chromium electroplating bath. 130g/L of sodium molybdate in Sargent bath for chromium electroplating causes a codepostion of molybdenum with chromium in a rage of 0.61 ~ 3.14 wt.%. The co-deposited molybdenum enhances the crystallinity of chromium layer, thus the hardness is slightly decreases by the addition of molybdate in electrolyte. However, due to the co-deposition of molybdenum, a crack-free chromium layer could be electrodeposited. Such crack-free chromium layer shows a significantly improved corrosion resistance.
Keywords
Low carbon steel; Chromium; Electroplating; $Na_2MoO_4$; Corrosion resistance;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 N. Imaz, E. Garcia-Lecina, J. A. Diez, M. Ostra, M. Sarret, Trans. IMF 90, (2012) 259-266.   DOI
2 Y. Song, D.-T. Chin, Electrochim. Acta 48, (2002) 349-356.   DOI
3 S. W. Yang, H. J. Ryu, J. H. Kim, B. O. Lee, C. B. Lee, J. Nucl. Mater. 401, (2010) 98-103.   DOI
4 K. M. Yin, C. M. Wang, Surf. Coat. Technol. 114, (1999) 213-223.   DOI
5 Z. Zeng, L. Wang, L. Chen, J. Zhang, Surf. Coat. Technol. 201, (2006) 2282-2288.   DOI
6 S. Y. Kang, D. W. Lee, J. Korean Inst. Surf. Eng. 47, (2014) 116-120.   DOI
7 H.-H. Sheu, C.-H. Lin, S.-Y. Jian, H.-B. Lee, B.-R. Yang, Int. J. Electrochem. Sci. (2016) 7099-7110.
8 D. Del Pianta, J. Frayret, C. Gleyzes, C. Cugnet, J. C. Dupin, I. Le Hecho, Electrochim. Acta 284, (2018) 234-241.   DOI
9 H. Shen, L. Wang, J. Sun, Surf. Coat. Technol. 385, (2020) 125450-125457.   DOI
10 G. -C. Ye, K. -H. Seo, J. Korean Inst. Surf. Eng. 37, (2004) 12-31.
11 M. Kim, J. J. Lee, D. Y. Kim, S. U. Park, S. C. Kwon, J. Korean Inst. Surf. Eng. 37, (2004) 179-184.
12 J. -Y. Lee, N. V. Phoung, D. K. Kang, M. Kim, S. C. Kwon, J. Korean Inst. Surf. Eng. 43, (2010) 297-303.   DOI
13 L. Zhang, Y. Jin, X. Wang, J. Cai, Q. Guan, High Temp. Mater. Process. 38, (2019) 444-451.   DOI
14 D. Lim, B. Ku, D. Seo, C. Lim, E. Oh, S. E. Shim, S.-H. Baeck, Int. J. Refract. Metals Hard Mater. 89, (2020) 105213-105217.   DOI
15 T. Watanabe, Current Topics in Amorphous Materials, Infrared Phys. Technol., North-Holland (1993) 137.
16 L. Xu, L. Pi, Y. Dou, Y. Cui, X. Mao, A. Lin, C. Fernandez, C. Peng, ACS Sustain. Chem. Eng. 8, (2020) 15540-15549.   DOI
17 M. H. Sohi, A. A. Kashi, S. M. M. Hadavi, J. Mat. Proc. Tech. 138, (2003) 219-222.   DOI