Browse > Article
http://dx.doi.org/10.5695/JKISE.2020.53.1.22

Catalytic Oxidation of CO over Manganese Dioxide Nanoparticles Synthesized Using a High Pressure Homogenizer  

Ji, Sunghwa (Department of Materials Science and Engineering, Chungnam National University)
Kim, Hyojin (Department of Materials Science and Engineering, Chungnam National University)
Publication Information
Journal of the Korean institute of surface engineering / v.53, no.1, 2020 , pp. 22-28 More about this Journal
Abstract
In this study, manganese dioxide (MnO2) nanoparticles were synthesized from KMnO4 and MnCl2·4H2O without any dispersing agents and oxidant via ultra-high pressure homogenization process. We investigated various physicochemical properties and CO oxidation reactions of the MnO2 nanoparticles as a function of the number of passes at 1,500 bar in a high pressure homogenizer nozzle. The observed X-ray diffraction patterns and scanning electron microscopy images revealed that the synthesized MnO2 nanoparticles had a hexagonal structure and a uniform spherical shape. It was found from the Brunauer-Emmett-Teller measurements that the pore size of the MnO2 nanoparticles ranged from 23.6 to 7.2 nm and their specific surface area ranged from 24 to 208 m2g-1. In particular, it was confirmed from the measurements of CO conversion into CO2 that CO oxidation reaction over the MnO2 nanoparticles exhibited excellent catalytic activity at low temperatures below 100℃.
Keywords
Manganese dioxide; Nanoparticle; CO oxidation; Catalyst; High pressure homogenizer;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Y.H. Lee, S.A. Jeon, S.J. Park, H.K. Youn, C.H. Shin, Physicochemical Properties of $MnO_2$ Catalyst Prepared via Hydrothermal Process and its Application for CO Oxidation, Clean Technol. 21 (2015) 248-256.   DOI
2 E.R. Stobbe, B.A. de Boer, J.W. Geus, The Reduction and Oxidation Behaviour of Manganese Oxides, Catal. Today 47 (1999) 161-167.   DOI
3 C.-L. Chang, Y.-C. Lin, H. Bai, Y.-H. Liu, Applying Spray Pyrolysis to Synthesize $MnO_X$ for Decomposing Isopropyl Alcohol in Ozone- and Thermal-Catalytic Oxidation, Korean J. Chem. Eng. 26 (2010) 1047-1052.   DOI
4 Y.S. Lee, J.S. Park, K.J. Oh, Oxidation Characteristics of Low Concentration CO Gas by the Natural Manganese Dioxide (NMD) in a Fixed Bed, Clean Technol. 2 (1996) 60-68.
5 P. Botkovitz, P. Deniard, M. Tournoux, R. Brec, Structural and Electrochemical Characteristics of a Hollandite-type $Li_XMnO_2$, J. Power. Sources 43-44 (1993) 657-665.
6 Q. Feng, H. Kanohb, K Ooi, Manganese Oxide Porous Crystals, J. Mater. Chem. 9 (1998) 319-333.   DOI
7 P. Barboux, J.M. Tarascon, F.K. Shokoohi, The Use of Acetates as Precursors for the Low-Temperature Synthesis of $LiMn_2O_4$ and $LiCoO_2$ Intercalation Compounds, J. Solid State Chem. 94 (1991) 185-196.   DOI
8 R. Koksbang, J. Barker, H. Shi, M.Y. Saidi, Cathode Materials for Lithium Rocking Chair Batteries, Solid State Ionics 84 (1996) 1-21.   DOI
9 K. Burapapadh, H. Takeuchi, P. Sriamornsak, Pectin-Based Nano-Sized Emulsions Prepared by High-Pressure Homogenization, Adv. Mater. Res. 506 (2012) 286-289.   DOI
10 A. A. Nagi, A. Rasedee, I. Siddig, B. Ahmad, Tamoxifen Drug Loading Solid Lipid Nanoparticles Prepared by Hot High Pressure Homogenization Techniques, Am. J. Pharm. Toxicol. 3 (2008) 219-224 (2008).   DOI
11 J.H. Park, Y.J. Kim, K.H. Cho, E.S. Kim, C.H. Shin, CO Oxidation Over Manganese Oxide Catalysts: Effect of Calcination Temperatures, Clean Technol. 17 (2011) 41-47.   DOI
12 S.F. Chen, J.P. Li, K. Qian, W.P. Xu, Y. Lu, W.X. Huang, S.H. Yu, Large scale photochemical synthesis of $M@TiO_2$ nanocomposites (M = Ag, Pd, Au, Pt) and their optical properties, CO oxidation performance, and antibacterial effect, Nano Res. 3 (2010) 244-255.   DOI
13 M.S. Chen, Y. Cai, Z. Yan, K.K. Gath, S. Axnanda, D.W. Goodman, Highly active surfaces for CO oxidation on Rh, Pd, and Pt, Surf. Sci. 601 (2007) 5326-5331.   DOI
14 M. Haruta, S. Tsubota, T. Kobayashi, H. Kageyama, M.J. Genet, B. Delmon, Low-Temperature Oxidation of CO over Gold Supported on $TiO_2$, ${\alpha}-Fe_2O_3$, and $Co_3O_4$, J. Catal. 144 (1993) 175-192.   DOI
15 V. Shapovalov, H. Metiu, Catalysis by doped oxides: CO oxidation by $Au_xCe_{1-x}O_2$, J. Catal. 245 (2007) 205-214.   DOI
16 J. Xu, T. White, P. Li, C. He, J. Yu, W. Yuan, Y.-F. Han, Biphasic Pd-Au Alloy Catalyst for Low-Temperature CO Oxidation, J. Am. Chem. Soc. 132 (2010), 10398-10406.   DOI
17 J.Y. Park, Y. Zhang, M. Grass, T. Zhang, G.A. Somorjai, Tuning of Catalytic CO Oxidation by Changing Composition of Rh-Pt Bimetallic Nanoparticles, Nano Lett. 8 (2008) 673-677.   DOI
18 H.-K. Lin, H.-C. Chiu, H.-C. Tsai, S.-H. Chien, C.-B. Wang, Synthesis, Characterization and Catalytic Oxidation of Carbon Monoxide over Cobalt Oxide, Catal. Lett. 88 (2003) 169-174.   DOI
19 J. Jansson, Low-Temperature CO Oxidation over $Co_3O_4/Al_2O_3$, J. Catal. 194 (2000) 55-60.   DOI
20 J.H. Cho, T.Y. Kim, H.Y. Yun, H. H. Kim, Facile depolymerization process of ${\beta}$-glucan through the use of a high pressure homogenizer, Am. J. Res. Comm. 4 (2014) 168-178.
21 S. H. Ji, H. H. Kim, and H. Kim, Effect of Pressure on the Magnetic Properties of Magnetite Nanoparticles Synthesized Using a High Pressure Homogenizer, J. Korean Magn. Soc. 26 (2016) 190-195.   DOI
22 L. Jin, C. Chen, V.M.B. Crisostomo, L. Xu, Y. Son, S.L. Suib, ${\gamma}-MnO_2$ octahedral molecular sieve: Preparation, characterization, and catalytic activity in the atmospheric oxidation of toluene, Appl. Catal. A 355 (2009) 169-175.   DOI
23 X. Xie, Y. Li, Z. Q. Liu, M. Haruta, W. Shen, Low-temperature oxidation of CO catalysed by $Co_3O_4$ nanorods, Nature 458 (2009) 746-749.   DOI
24 K. Rida, A. Lopez Camara, M.A. Pena, C.L. Bolivar-Diaz, A. Martinez-Arias, Bimetallic Co-Fe and Co-Cr oxide systems supported on $CeO_2$: Characterization and CO oxidation catalytic behavior, Int. J. Hydrogen Energy 40 (2015) 11267-11278.   DOI
25 L. Cai, Z. Hu, P. Branton, W. Li, The effect of doping transition metal oxides on copper manganese oxides for the catalytic oxidation of CO, Chinese J. Catal. 35 (2014) 159-167.   DOI
26 Z.-D. Tan, H.-Y. Tan, X.-Y. Shi, J. Zhuan, Y.-F. Yan, Z. Yin, Metal-Organic Framework MIL-53(Al)-Supported Copper Catalyst for CO Catalytic Oxidation Reaction, Inorg. Chem. Commun. 61 (2015) 128-131.   DOI
27 Y. Zhao, P. Jiang, $MnO_2$ Nanosheets Grown on the ZnO-Nanorod-Modified Carbon Fibers for Supercapacitor Electrode Materials, Colloid. Surface. A: Physicochem. Eng. Aspects 444 (2014) 232-239.   DOI
28 U.M. Patil, J.S. Sohn, S.B. Kulkarni, H.G. Park, Y. Jung, K.V. Gurav, J.H. Kim, S.C. Jun, A Facile Synthesis of Hierarchical ${\alpha}-MnO_2$ Nanofibers on 3D-Graphene Foam for Supercapacitor Application, Mater. Lett. 119 (2014) 135-139.   DOI
29 C.-H. Wu, J.-S. Ma, C.-H. Lu, Effects of Reducing Agents on the Electrochemical Properties of the Prepared Manganese Oxide Powders, Curr. Appl. Phys. 12 (2012) 1058-1063.   DOI
30 Y. Lv, H. Li, Y. Xie, S. Li, J. Li, Y. Xing, Y. Song, Facile synthesis and Electrochemical Properties of $MnO_2$/carbon Nanotubes, Particuology 15 (2014) 34-38.   DOI