Browse > Article
http://dx.doi.org/10.5695/JKISE.2019.52.6.334

Optical Properties of Metal Halide Perovskite Nanocrystals with Addition of Metal Bromide  

Yun, Seokjin (Department of Materials Science and Engineering, Chungnam National University)
Choi, Jihoon (Department of Materials Science and Engineering, Chungnam National University)
Publication Information
Journal of the Korean institute of surface engineering / v.52, no.6, 2019 , pp. 334-341 More about this Journal
Abstract
Organometal halide perovskite materials have attracted much attention in the photovoltaic and light emitting devices due to the compositional flexibility with AMX3 formula (A is an organic amine cation; M is a metal ion; X is a halogen atom). The addition of homovalent or heterovalent metal cations to the bulk organohalide perovskites has been performed to modify their energy band structure and the relevant optoelectronic properties by ligand-assisted ball milling. Here, we report CH3NH3Pb1-xMxBr3 nanocrystals substituted by metallic cations (M is Sn2+, In3+, Bi3+; x = 0, 0.01, 0.02, 0.05, 0.1, 0.2). Photoluminescence and quantum yield was significantly reduced with increasing metallic cations content. These quenching effect could be resulted from the metal cations that behave as a non-radiative recombination center.
Keywords
Metal halide perovskite; Ball milling; Metallic cation substitution; Optical properties;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Yang. W. S, Noh. J. H, Jeon. N. J, Kim. Y. C, Ryu. S, Seo. J, Seok. S. I, High-performance photovoltaic perovskite layers fabricated through intramolecular exchange, Science, 348 (2015) 1234-1237.   DOI
2 Xiao. Z, Kerner. R. A, Zhao. L, Tran. N. L, Lee. K. M, Koh. T. W, Scholes. G. D, Rand. B. P, Efficient perovskite light emitting diodes featuring nanometer-sized crystallites, Nat. Photonics, 11 (2017) 108-115.
3 Bade. S. G. R, Li. J, Shan. X, Ling. Y, Tian. Y, Dilbeck. T, Besara. T, Geske. T, Gao. H, Ma. B, et al, Fully printed halide perovskite light-emitting diodes with silver nanowire electrodes, ACS Nano, 10 (2016) 1795-1801.   DOI
4 Li. J, Bade. S. G. R, Shan. X, Yu. Z, Single-layer light-emitting diodes using organometal halide perovskite/poly(ethylene oxide) composite thin films, Adv. Mater, 27 (2015) 5196-5202.   DOI
5 Dou. L, Wong. A. B, Yu. Y, Lai. M, Kornienko. N, Eaton. S. W, Fu. A, Bischak. C. G, Ma. J, Ding. T, Ginsberg. N. S, Wang. L. W, Alivisatos. A. P, Yang. P, Atomically thin two-dimensional organic-inorganic hybrid, Science, 349 (2015) 1518-1521.   DOI
6 Chen. Q, De Marco. N, Yang. Y, Song. T.-B, Chen. C.-C, Zhao. H, Hong. Z, Zhou. H, Yang. Y, Under the spotlight: The organic-inorganic hybrid halide perovskite for optoelectronic applications, Nano Today, 10 (2015) 355-396.   DOI
7 Green. M. A, Ho-Baillie. A, Snaith. H. J, The emergence of perovskite solar cells, Nat. Photonics, 8 (2014) 506-514.   DOI
8 Fan. Z, Sun. K, Wang. J, Perovskites for photovoltaics: a combined review of organicinorganic halide perovskites and ferroelectric oxide perovskites, J. Mater. Chem. A, 3 (2015) 18809-18828.   DOI
9 Niemann. R. G, Gouda. L, Hu. J, Tirosh. S, Gottesman. R, Cameron. P. J, Zaban. A, $Cs^+$ incorporation into $CH_3NH_3PbI_3$ perovskite: Substitution limit and stability enhancement, J. Mater. Chem. A, 4 (2016) 17819-17827.   DOI
10 Hu. Y, Schlipf. J, Wussler. M, Petrus. M. L, Jaegermann. W, Bein. T, Mu?ller-Buschbaum. P, Docampo. P, Hybrid perovskite/perovskite heterojunction solar cells, ACS Nano, 10 (2016) 5999-6007   DOI
11 Yun. S, Kirakosyan. A, Yoon. S.-G, Choi. J, Scalable synthesis of exfoliated organometal halide perovskite nanocrystals by ligand-assisted ball milling, ACS Sustain. Chem, Eng, 6 (2018) 3733-3738.   DOI
12 Luo. S, Daoud. W. A, Crystal structure formation of $CH_3NH_3PbI_{3-x}Cl_x$ perovskite, Materials, 9 (2016) 123.   DOI
13 Tong. Y, Ehrat. F, Vanderlinden. W, Cardenas- Daw. C, Stolarczyk. J. K, Polavarapu. L, Dilutioninduced formation of hybrid perovskite nanoplatelets, ACS Nano, 10 (2016) 10936-10944.   DOI
14 Weidman. M. C, Seitz. M, Stranks. S. D, Tisdale. W. A, Highly tunable colloidal perovskite nanoplatelets through variable cation, metal, and halide composition, ACS Nano, 10 (2016) 7830-7839.   DOI
15 Stoumpos. C. C, Malliakas. C. D, Kanatzidis. M. G, Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties, Inorg. Chem, 52 (2013) 9019-9038.   DOI
16 Xing. G. C, Mathews. N, Lim. S. S, Yantara. N, Liu. X, Sabba. D, Gratzel. M, Mhaisalkar. S, Sum. T. C, Low-temperature solution-processed wavelength-tunable perovskites for lasing, Nat. Mater. 13 (2014) 476-480.   DOI
17 Ha. S. T, Su. R, Xing. J, Zhang. Q, Xiong. Q, Metal halide perovskite nanomaterials: synthesis and applications, Chem. Sci, 8 (2017) 2522-2536.   DOI
18 Schmidt. L. C, Pertegas. A, Gonzalez-Carrero. S, Malinkiewicz. O, Agouram. S, Minguez Espallargas. G, Bolink. H. J, Galian. R. E, Perez- Prieto. J, Nontemplate synthesis of $CH_3NH_3PbBr_3$ perovskite nanoparticles, J. Am. Chem. Soc, 136 (2014) 850-852.   DOI
19 Zhang. F, Zhong. H, Chen. C, Wu. X.-g, Hu. X, Huang. H, Han. J, Zou. B, Dong. Y, Brightly luminescent and color-tunable colloidal $CH_3NH_3PbX_3$ (X = Br, I, Cl) quantum dots: potential alternatives for display technology, ACS Nano, 9 (2015) 4533-4542.   DOI
20 Sichert. J. A, Tong. Y, Mutz. N, Vollmer. M, Fischer. S, Milowska. K. Z, García Cortadella. R, Nickel. B, Cardenas-Daw. C, Stolarczyk. J. K, Urban. A. S, Feldmann. J, Quantum size effect in organometal halide perovskite nanoplatelets, Nano Lett, 15 (2015) 6521-6527.   DOI
21 Protesescu. L, Yakumin. S, Bodnarchuk. M. I, Krieg. F, Caputo. R, Hendon. C. H, Yang. R. X, Walsh. A, Kovalenko. M. C, Nanocrystals of cesium lead halide perovskites ($CsPbX_3$, X = Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut, Nano Lett, 15 (2015) 3692-3696.   DOI
22 Udayabhaskararao. T, Kazes. M, Houben. L, Lin. H, Oron. D, Nucleation, growth, and structural transformations of perovskite nanocrystals, Chem. Mater, 29 (2017) 1302-1308.   DOI
23 Wei. S, Yang. Y, Kang. X, Wang. L, Huang. L, Pan. D, Room-temperature and gram-scale synthesis of $CsPbX_3$ (X = Cl, Br, I) perovskite nanocrystals with 50-85% photoluminescence quantum yields, Chem. Commun, 52 (2016) 7265-7268.   DOI
24 Pellet. N, Teuscher. J, Maier. J, Gra?tzel. M, Transforming hybrid organic inorganic perovskites by rapid halide exchange, Chem. Mater, 27 (2015) 2181-2188.   DOI
25 Sapori. D, Kepenekian. M, Pedesseau. L, Katan. C, Even. J, Quantum confinement and dielectric profiles of colloidal nanoplatelets of halide inorganic and hybrid organic-inorganic perovskites, Nanoscale, 8 (2016) 6369-6378.   DOI
26 Kirakosyan. A, Yun. S, Yoon. S.-G, Choi. J, Surface engineering for improved stability of $CH_3NH_3PbBr_3$ perovskite nanocrystals, Nanoscale, 10 (2018) 1885.   DOI
27 Akkerman. Q. A, D'Innocenzo. V, Accornero. S, Scarpellini. A, Petrozza. A, Prato. M, Manna. L, Tuning the optical properties of cesium lead halide perovskite nanocrystals by anion exchange reactions, J. Am. Chem. Soc, 137 (2015) 10276-10281.   DOI
28 Nedelcu. G, Protesescu. L, Yakunin. S, Bodnarchuk. M. I, Grotevent. M. J, Kovalenko. M. V, Fast anion-exchange in highly luminescent nanocrystals of cesium lead halide perovskites ($CsPbX_3$, X = Cl, Br, I), Nano Lett, 15 (2015) 5635-5640.   DOI
29 Shewmon. N. T, Yu. H, Constantinou. I, Klump. E, So. F, Formation of perovskite heterostructures by ion exchange, ACS Appl. Mater. Interfaces, 8 (2016) 33273-33279.   DOI
30 Eperon. G. E, Beck. C. E, Snaith. H. J, Cation exchange for thin film lead iodide perovskite interconversion, Mater. Horiz, 3 (2016) 63-71.   DOI