Browse > Article
http://dx.doi.org/10.5695/JKISE.2018.51.1.27

Anodic Growth of Large Inner Diameter TiO2 Nanotubes  

Lee, Hyeon-Kwon (School of Nano & Materials Science and Engineering, Kyungpook National University)
Oh, Hyunchul (Department of Energy Engineering, Gyeongnam National University of Science and Technology(GNTECH))
Lee, Kiyoung (School of Nano & Materials Science and Engineering, Kyungpook National University)
Publication Information
Journal of the Korean institute of surface engineering / v.51, no.1, 2018 , pp. 27-33 More about this Journal
Abstract
In the present work, we demonstrate the feasibility to form large inner diameter $TiO_2$ nanotubes by anodization of Ti in a HF/ethylene glycol electrolyte. In order to achieve the large inner diameter $TiO_2$ nanotubes, optimization of the anodization condition is required. We discover the key factors in the formation of large inner diameter $TiO_2$ nanotubes are concentration of water in the electrolyte, anodization temperatures, and high-applied potential. Under optimum conditions, the inner diameters of $TiO_2$ nanotubes are 379 nm. The results are approximately 3 folders larger than the general case.
Keywords
Large diameter; $TiO_2$; Nanotubes; Anodization; Ti surface treatment;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. P. Albu, P. Roy, S. Virtanen, P. Schmuki, Self-organized $TiO_2$ nanotube arrays: critical effects on morphology and growth, Isr. J. Chem. 50 (2010) 453-467.   DOI
2 J. Choi, R. B. Wehrspohn, J. Lee, U. Gosele, Anodization of nanoimprinted titanium: a comparison with formation of porous alumina, Electrochim. Acta 49 (2004) 2645-2652.   DOI
3 D. Kim, A. Ghicov, S. P. Albu, P. Schmuki, Bamboo-type $TiO_2$ nanotubes: Improved conversion efficiency in dye-sensitized solar cells, J. Am. Chem. Soc. 130 (2008) 16454-16455.   DOI
4 C. J. Barbe, F. Arendse, P. Comte, M. Jirousek, F. Lenzmann, V. Shklover, M. Gratzel, Nanocrystalline titanium oxide electrodes for photovoltaic applications, J. Am. Ceram. Soc., 80 (1997) 3157-3171.
5 S. Agarwala, M. Kevin, A. S. Wong, C. K. N. Peh, V. Thavasi, G. W. Ho, Mesophase ordering of $TiO_2$ film wih high surface area and strong light harvesting for dye-sensitized solar cell, ACS Appl. Mater. Inter. 2 (2010) 1844-1850.   DOI
6 D. Kuang, J. Brillet, P. Chen, M. Takata, S. Uchida, H. Miura, K. Sumioka, S. M. Zakeeruddin, M. Gratzel, Application of highly ordered $TiO_2$ nanotube arrays in flexible dye-sensitized solar cells, ACS Nano 2 (2008) 1113-1116.   DOI
7 N. Liu, K. Lee, P. Schmuki, Small diameter $TiO_2$ nanotubes vs. nanopores in dye sensitized solar cells, Electrochem. Commun. 15 (2012) 1-4.   DOI
8 J. M. Macak, P. Schmuki, Anodic growth of self-organzied anodic $TiO_2$ nanotubes in viscous electrolytes, Electrochim. Acta 52 (2006) 1258-1264.   DOI
9 P. Roy, S. Berger, P. Schmuki, $TiO_2$ nanotubes: Synthesis and applications, Angew. Chem. Int. Ed. 50 (2011) 2904-2939.   DOI
10 S. Bauer, S. Kleber, P. Schmuki, $TiO_2$ nanotubes: Tailoring the geometry in $H_3PO_4/HF$ electrolytes, Electrochem. Commun. 8 (2006) 1321-1325.   DOI
11 A. Ghicov, S. P. Albu, R. Hahn, D. Kim, T. Stergiopoulos, J. Kunze, C. -A. Schiller, P. Falaras, P. Schmuki, $H_3PO_4/HF$ nanotubes in dye-sensitized solar cells: Critical factors for the conversion efficiency, Chem. Asian J. 4 (2009) 520-525.   DOI
12 J. Wang, Z. Lin, Anodic formation of ordered $TiO_2$ nanotube array: Effects of electrolyte temperature and anodization potential, J. Phys. Cehm. C 113 (2009) 4026-4030.   DOI
13 V. Zwilling, M. Aucouturier, E. Darque-Ceretti, Anodic oxidation of titanium and TA6V alloy in chromic media. An electrochemical approach, Electrochim. Acta 45 (1999) 921-929.   DOI
14 S. Li, G. Zhang, D. Guo, L. Yu, W. Zhang, Anodization fabrication of highly ordered $TiO_2$ nanotubes, J. Phys. Chem. C 113 (2009) 12759-12765.
15 J. M. Macak, H. Tsuchiya, P. Schmuki, High-aspect-ratio $TiO_2$ nanotubes by anodization of titanium, Angew. Chem. Int. Ed. 44 (2005) 2100-2102.   DOI
16 R. Beranek, H. Hildebrand, P. Schmuki, Self-organized porous titanium oxide preparerd in $H_2SO_4/HF$ electrolytes, Electrochem. Solid-State Lett. 6 (2003) B12-B14.   DOI
17 R. Hahn, T. stergiopoulus, J. M. Macak, D. Tsoukleris, A. G. Kontos, S. P. Albu, D. Kim, A. Ghicov, J. Kunze, P. Falaras, P. Schmuki, Efficient solar energy conversion using $TiO_2$ nanotubes produced by rapid breakdown anodization - a comparison, Phys. Stat. Sol. (RRL) 1 (2007) 135-137.   DOI
18 K. S. Raja, M. Misra, K. Paramguru, Formation of self-orderd nano-tublar structure of anodic oxide layer on titanium, Electrochim. Acta 51 (2005) 154-165.   DOI
19 J. M. Macak, H. Hildebrand, U. Marten-Jahns, P. Schmuki, Mechanistic aspects and growth of large diameter self-organized $TiO_2$ nanotubes, J. Electroanal. Chem. 621 (2008) 254-266.   DOI
20 S. P. Albu, A. Ghicov, J. M. Macak, P. Schmuki, $250{\mu}m$ long anodic $TiO_2$ nanotubes with hexagonal self-ordering, Phys. Stat. Sol. (RRL) 1 (2007) R65- R67.   DOI
21 S. P. Albu, D. Kim, P. Schmuki, Growth of aligned $TiO_2$ bamboo-type nanotubes and highly ordered nanolace, Angew. Chem. 120 (2008) 1942-1945.   DOI
22 U. Bach, D. Lupo, P. Comte, J. E. Moser, F. Weissortel, J. Salbeck, H. Spreitzer, M. Gratzel, Solid-state dye-sensitized mesoporous $TiO_2$ solar cells with high photon-to-electron conversion efficiencies, Nature 395 (1998) 583-585.   DOI
23 M. Gratzel, Solar energy conversion by dye-sensitized photovoltaic cells, Inorg. Chem. 44 (2005) 6841-6851.   DOI
24 P. Roy, D. Kim, K. Lee, E. Spiecker, P. Schmuki, $TiO_2$ nanotubes and their application in dye-sensitized solar cells, Nanoscale 2 (2010) 45-59.   DOI
25 S. U. M. Khan, M. Al-Shahry, W. B. Ingler Jr., Efficient photochemical water splitting by a chemically modified n-$TiO_2$, Science 297 (2002) 2243-2245.   DOI
26 J. H. Park, S. Kim, A. J. Bard, Novel carbon-doped $TiO_2$ nanotube arrays with high aspect ratios for efficient solar water splitting, Nano Lett. 6 (2006) 24-28.   DOI
27 W. Zhao, W. Ma, C. Chen, J. Zhao, Z. Shuai, Efficient degradation of toxic organic pollutants with $Ni_2O_3/TiO_{2-x}B_x$ under visible irradiation, J. Am. Chem. Soc. 126 (2004) 4782-4783.   DOI
28 M. Ni, Michael K. H. Leung, Dennis Y. C. Leung, K. Sumathy, A review and recent developments in photocatalytic water-splitting using $TiO_2$ for hydrogen production, Renew. Sust. Energ. Rev. 11 (2007) 401-425.   DOI
29 T. Noguchi, A. Fujishima, P. Sawunyama, K. Hashimoto, Photocatalytic degradation of gaseous formaldehyde using $TiO_2$ film, Environ. Sci. Technol. 32 (1998) 3831-3833.   DOI
30 Y. Ohko, I. Ando, C. Niwa, T. Tatsuma, T. Yamamura, T. Nakashima, Y. Kubota, A. Fujishima, Degradation of bisphenol A in water by $TiO_2$ photocatalyst, Environ. Sci. Technol. 35 (2001) 2365-2368.   DOI
31 K. Lee, J. Kim, H. Kim, Y. Lee, Y. Tak, D. Kim, P. Schmuki, Effect of electrolyte conductivity on the formation of a nanotublar $TiO_2$ Photoanode for a dye-sensitized solar cell, J. Korean Phys. Soc. 54 (2009) 1027-1031.   DOI