Browse > Article
http://dx.doi.org/10.5695/JKISE.2017.50.2.108

Effect of Graphite Electrode Geometry and Combination on Nanocarbon Synthesis using Underwater Discharge Plasma  

Jo, Sung-Il (Department of Advanced Materials Science and Engineering, Graduate School of Kangwon National University)
Lee, Byeong-Joo (Department of Advanced Materials Science and Engineering, Graduate School of Kangwon National University)
Jeong, Goo-Hwan (Department of Advanced Materials Science and Engineering, Graduate School of Kangwon National University)
Publication Information
Journal of the Korean institute of surface engineering / v.50, no.2, 2017 , pp. 108-113 More about this Journal
Abstract
We investigated the effect of graphite electrode geometry and combination on nanocarbon material synthesis using underwater discharge plasma(UDP). The UDP system consists of two graphite electrodes and beaker filled with de-ionized water. A high voltage of 15 kV with a frequency of 25 kHz is applied to produce UDP using an alternating-current power source. The UDP system with conical electrodes produced the largest amount of products due to the concentration of electrical fields between electrodes. In addition, hollow-shaped stationary electrode and conical-shaped moving electrode stores discharge-induced bubbles and maintains longer reaction time. We found from Raman spectroscopy and electron microscopy that high quality carbon nanomaterials including carbon nanotubes are synthesized by the UDP system.
Keywords
Underwater discharge plasma; Nanocarbon synthesis; Graphite electrode; Electrode geometry; Electrode configuration; Raman scattering spectroscopy;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 G. Saito and T. Akiyama, Nanomaterial synthesis using plasma generation in liquid, J. Nanomaterials 15 (2015) 1-21.
2 N. Sano, H. Wang, I. Alexandrou, M. Chhowalla, K. B. K. Teo, G. A. J. Amaratunga, and K. Iimura, Properties of carbon onions produced by an arc discharge in water, J. Appl. Phys. 92 (2002) 2783-2788.   DOI
3 X. Li, H. Zhu, B. Jiang, J. Ding, C. Xu, and D. Wu, High-yield synthesis of multi-walled carbon nanotubes by water-protected arc discharge method, Carbon 411 (2002) 1645-1687.
4 H. Lange, M. Sioda, A. Huczko, Y. Q. Zhu, H. W. Kroto, and D. R. M. Walton, Nanocarbon production by arc discharge in water, Carbon 41 (2003) 1617-1623.   DOI
5 Y. Ichino, K. Mitamura, N. Saito, and O. Takai, Characterization of platinum catalyst supported on carbon nanoballs prepared by solution plasma processing, J. Vac. Sci. & Technol. A 27 (2009) 826-830.   DOI
6 T. Charinpanitkkul, W. Tanthapanichakoon, and N. Sano, Carbon nanostrucutres syntehsized by arc discharge between carbon and iron electrodes in liquid nitrogen, Curr. Appl. Phys. 9 (2009) 629-632.   DOI
7 J. Kang, O. Li, and N. Saito, Synthesis of strucutre-controlled carbon nano spheres by solution plasma process, Carbon 60 (2013) 292-298.   DOI
8 B. J. Lee and G. H. Jeong, Ferritin-mixed solution plasma system yielding low-dimensional carbon nanomaterials and their application to flexible conductive paper, Curr. Appl. Phys. 15 (2015) 1506-1511.   DOI
9 M. S. Dresselhaus, G. Dresselhaus, R. Saito, and A. Jorio, Raman spectroscopy of carbon nanotubes, Phys. Rep. 409 (2005) 47-99.   DOI
10 B. J. Lee and G. H. Jeong, Graphene doping by ammonia plasma surface treatment, J. Kor. Inst. Surf. Eng. 48 (2015) 163-168.   DOI
11 N. Sano, H.Wang, M. Chhowalla, M. I. Alexandrou, and G. A. J. Amaratunga, Synthesis of carbon onions in water, Nature 414 (2001) 506-507.
12 H. Kroto, J. Heath, S. Obrien, R. Curl, and R. Smalley, $C_{60}$:Buckminsterfullerene, Nature 318 (1985) 162-163.   DOI
13 S. Iijima, Helical microtubules of graphitic carbon, Nature 354 (1991) 56-58.   DOI
14 K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Electric field effect in atomically thin carbon films, Science 306 (2004) 666-669.   DOI
15 C. Journet, W. K. Maser, P. Bernier, A. Loiseau, M. L. Chapelle, S. Lefrant, P. Deniard, R. Lee, and J. E. Fischer, Large-scale production of single-walled carbon nanotubes by the electric-arc technique, Nature 388 (1997) 756-758.   DOI
16 T. Guo, P. Nikolaev, A. Gthess, D. T. Colbert, and R. E. Smalley, Catalytic growth of single-walled manotubes by laser vaporization, Chem. Phys. Lett. 243 (1995) 49-54.   DOI
17 S. Fan, M. G. Chapline, N. R. Franklin, T. W. Tombler, A. M. Cassell, and H. Dai, Self-oriented regular arrays of carbon nanotubes and their field emission properties, Science 283 (1999) 512-514.   DOI