Browse > Article
http://dx.doi.org/10.5695/JKISE.2012.45.6.242

High Temperature Durability Amorphous ITO:Yb Films Deposited by Magnetron Co-Sputtering  

Jung, Tae Dong (National Core Research Center for Hybrid Materials Solution, Pusan National University)
Song, Pung Keun (Department of Materials Science and Engineering, Pusan National University)
Publication Information
Journal of the Korean institute of surface engineering / v.45, no.6, 2012 , pp. 242-247 More about this Journal
Abstract
Yb-doped ITO (ITO:Yb) films were deposited on unheated non-alkali glass substrates by magnetron cosputtering using two cathodes (DC, RF) equipped with the ITO and $Yb_2O_3$ target, respectively. The composition of the ITO:Yb films was controlled by adjusting the RF powers from 0 W to 480 W in 120 W steps with the DC power fixed at 70 W. The ITO:Yb films had a higher crystallization temperature ($200^{\circ}C$) than that of the ITO films ($170^{\circ}C$), which was attributed to both larger ionic radius of $Yb^{3+}$ and higher bond enthalpy of $Yb_2O_3$, compared to ITO. This amorphous ITO:Yb film post-annealed at $170^{\circ}C$ showed a resistivity of $5.52{\times}10^{-4}{\Omega}cm$, indicating that a introduction of Yb increased resistivity of the ITO film. However, these amorphous ITO:Yb films showed a high etching rate, fine pattering property, and a very smooth surface morphology above the crystallization temperature of the amorphous ITO films (about $170^{\circ}C$). The transmittance of all films was >80% in the visible region.
Keywords
TCO; Yb-doped ITO; Amorphous ITO; Co-Sputtering;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Y. H. Jung, E. S. Lee, K. H. Kim, J. Kor. Inst. Surf. Eng., 38 (2005) 150.
2 Z. C. Jin, I. Harmberg, C. G. Granqvist, Thin Solid Films, 64 (1988) 381.
3 P. K. Song, Y. Shigesato, I. Yasui, D. C. Paine, Jpn. J. Appl. Phys., 37 (1998) 1870.   DOI
4 J. E. A. van den Meerakker, P. C. Baarslag, W. Walrave, T. J. Vink, Thin Solid Films, 266 (1995) 152.   DOI   ScienceOn
5 E. Nishimura, M. Ando, K. Onisawa, Jpn. J. Appl. Phys., 35 (1996) 2788.   DOI
6 D. C. Paine, T. Whitson, D. Janiac, Jpn. J. Appl. Phy., 85 (1999) 8445.   DOI
7 P. K. Song, H. Akao, M. Kamei, Y. Shigesato, Jpn. J. Appl. Phys., 38 (1999) 5224.   DOI
8 S. I. Kim, S. H. Cho, P. K. Song, J. Kor. Phys. Soc., 54 (2009) 1297.   DOI
9 Y. M. Kang, S. H. Kwon, J. H. Choi, Y. J. Cho, P. K. Song, Thin Solid Films, 518 (2010) 3081.   DOI
10 D. Y. Lee, J. R. Lee, P. K. Song, Surf. Coat. Technol., 202 (2008) 5718.   DOI
11 T. S. Kim, C. H. Choi, T. S. Jeong and K. H. Shim, J. Kor. Phys. Soc., 51 (2004) 534.
12 C. Guillen, J. Herrero, Vacuum, 80 (2006) 615.   DOI   ScienceOn
13 Y. Shigesato, D. C. Paine, Appl. Phys. Lett., 62 (1993) 1268.   DOI