Browse > Article
http://dx.doi.org/10.5695/JKISE.2011.44.1.013

High-Temperature Oxidation Behavior of Fe-22%Cr-5.8%Al Alloy  

Kim, Song-Yi (School of Advanced Materials Engineering, Andong National University)
Choi, Sung-Hwan (School of Advanced Materials Engineering, Andong National University)
Yun, Jung-Yeul (Department of Materials Engineering, KIMM)
Kong, Young-Min (School of Materials Science Engineering, University of Ulsan)
Kim, Byoung-Kee (School of Materials Science Engineering, University of Ulsan)
Lee, Kee-Ahn (School of Advanced Materials Engineering, Andong National University)
Publication Information
Journal of the Korean institute of surface engineering / v.44, no.1, 2011 , pp. 13-20 More about this Journal
Abstract
This study investigated the high temperature oxidation behavior of Fe-22%Cr-5.8%Al alloy and the oxidation kinetics of the alloy were discussed. Bulk samples were prepared by VAM (vacuum arc melting) and hot forging. High temperature oxidation testes were isothermally conducted up to 100 hours in 79%$N_2$+21%$O_2$ environment at three different temperatures ($900^{\circ}C$, $1000^{\circ}C$, $1100^{\circ}C$). The weight gain was measured after oxidation according to oxidation time (2, 4, 6, 8, 10, 15, 20, 25, 30, 60, 80, 100 hours). The weight gain significantly increased with increasing oxidation temperature. As the temperature increased, the oxidized samples showed sequential formation of $Al_2O_3$, Cr-rich oxide, Fe-rich oxide. The activation energy of high temperature oxidation was obtained as 306.63 KJ/mol. $Al_2O_3$ were developed on the surface in the early stage of oxidation, representing protective role of oxidation. However, Fe-based and Cr-based oxides leaded to breakaway of oxide layer, thus resulted in the significant increase of additional oxidation.
Keywords
Fe-22%Cr-5.8%Al; High temperature oxidation; Oxidation time; Oxidation kinetics; Oxides;
Citations & Related Records
연도 인용수 순위
  • Reference
1 D. P. Whittle, J. Stringer, Phil. Trans. R. Soc. Lond, A295 (1980) 309.
2 F. Clemendot, J. M. Gras, J. C. van Duysen, J. de Physique IV, 3 (1993) 291.   DOI
3 S. C. Choi, S. Park et al., Kor. J. Met. Mater, 35(1) (1997) 136.
4 K. S. Lee, H. Y. Ra, J. Met. Mater., 34(1) (1996) 936.
5 S. Hiroshi, K. Masski, Y. Keiichi, Kawasaki Steel Technical Report No., 31 (1994).
6 B. G. Moon, S. C. Kang, G. M. Kim, J. Corros Sci. Soc. of Korea, 25(2) (1996) 149.
7 Z. L. Zhang, X. J. Ahang, T. J. Pan et al., Gangtie Yanjiu, 35(3) (2007) 38.
8 W. J. Quadakkers, J. Jedlinski, G. Borchardt et al., Appl Surf. Sci., 47 (1991) 261.   DOI
9 Y. C. Shin, K. S. Lee, W. W. Park, Kor. J. Met. Mater., 34(7) (1996) 936.
10 K. Ishii, T. Kawasaki, J. Jpn. Inst. Met., 56 (1992) 854.   DOI
11 J. G. Smeggil, A. W. Funkenbusch, N. S. Bornstein, Metall. Trans., 17 (1986) 923.   DOI
12 J. L. Smialek, Metall. Trans., 9A (1979) 309.
13 P. A. Mari, J. M Chaiz, J. P. larin, Oxidation of Metal, 17 (1982) 315.   DOI
14 J. Jedlinski, G. Borchardt, Oxidation of Metals 36 (1991) 317.   DOI
15 M. H. Lagrange, A. M. Huntz, J. Y. Laval, Ann. Chim. Fr, 12 (1987) 9.
16 I. M. Wolff, L. E. Iorio et al., Mater. Sci. Eng., A241 (1998) 264.
17 Z. L. Zhang, D. Y. Li, X. Q. Dong, Acta Metall. Sin., 20 (2007) 87.   DOI
18 S. E. Sadique, A. H. Mollah, M. M. Ali et al., J. Corros. Sci. Eng., 1 (2000) 18.
19 Y. Niu, S. Wang, F. Gao et al., Corros. Sci., 50 (2008) 345.   DOI
20 R. Cueff, H. Buscail, E. Caudron et al., Corros. Sci., 45 (2003) 1815.   DOI