Browse > Article

Characteristics of Flame Hardening Process for 12Cr Steels  

Kim Gwang-Ho (Department of Materials Engineering, Chungnam National University)
Lee Min-Ku (Nuclear Nanomaterials Development Lab, Korea Atomic Energy Research Institute)
Kim Kyeong-Ho (Nuclear Materials Technology Development team, Korea Atomic Energy Research Institute)
Kim Whung-Whoe (Nuclear Materials Technology Development team, Korea Atomic Energy Research Institute)
Rhee Chang-Kyu (Nuclear Nanomaterials Development Lab, Korea Atomic Energy Research Institute)
Kim Gil-Mu (Department of Materials Engineering, Chungnam National University)
Publication Information
Journal of the Korean institute of surface engineering / v.39, no.2, 2006 , pp. 49-56 More about this Journal
Abstract
In this study, the movable flame hardening process of 12Cr steel for a uniform hardness and desirable residual stress have been investigated. For this, the temperature cycles have been controlled accurately as a function of the three processing variables, the flame intensity $I_f$, the scanning velocity $V_s$, and the initial flame holding time $t_h$, where the standard surface temperature $T_{s,\;max}$, was maintained at $960^{\circ}C$. The optimized conditions were $V_s=0.68mn/s\;and\;t_h=67sec$ for the $C_3H_8:O_2\;=\;5:20l/min,\;V_s=0.80mm/s$ and $t_h=56sec$ for the $C_3H_8:O_2=6:24l/min,\;V_s=1.01mm/s\;and\;t_h=48sec$ for the $C_3H_8:O_2=7:28l/min,\;and\;V_s=1.15mm/s$ and $t_h=39sec$ for the $C_3H_8:O_2$=8:32 l/min. The optimally flame-hardened surface exhibited uniform distributions of the hardness and residual compressive stress over the treated area with moderate levels of $470{\sim}490HV_{0.2}$in hardness and $-300{\sim}-450MPa$ in residual stress, which were acceptable on the basis of the acceptance criteria of Siemens AG-KWU and GE Power Generation Engineering.
Keywords
Flame hardening; 12Cr steel; Steam turbine blade; Residual stress; Heart treatment;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. K. Lee, G. H. Kim, K. H. Kim, W. W. Kim, Surf. Coat. Tech., 184 (2004) 239   DOI
2 Bekir Sami Yilbas, Muhammad Sami, Shahzada Zaman Shuja. Optics and Lasers in Engineering, 30 (1998) 25   DOI   ScienceOn
3 S. Sen, B. Aksakal, A. Ozel, Int. J. Mech. Sci. 42 (2000) 2013   DOI   ScienceOn
4 I. R. Pashby, S. Barnes, B. G. Bryden, J. Mat. Processing Tech., 139 (2003) 585   DOI   ScienceOn
5 Janez Grum, J. Mat. Processing Tech., 114 (2001) 212   DOI   ScienceOn
6 K. Schleithoff, F. Schmitz, Workshop Proceedings, edited by R. I. Jaffee, Palo Alto, CA, Sep. 21-24, EPRI, Pergamon Press, (1981) 2-70
7 B. D. Cullity, Elements of X-ray diffraction (Addison-Wesley, Reading, MA) 2nd ed., 447 (1978)
8 Process specification, Materials and Process Engineering, GE Power Engineering, Schenectady, NY, (1995) 14
9 M. Melander, Yao Shanchang, T. Ericsson, In Proc. 3rd Int. Congress on Heat Treatment of Materials, Shanghai, PT (1984) NOV, 2.75-7.85
10 E. Stuecker, G. Gartner, H. J. Hamel, Steam and Combustion Turbine Blading conference and Workshop, Orlando, Florida, (1992) 1
11 J. M. Char, J. H. Yeh, J. Quant. Specrosc. Radiat. Transfer, 56(1) (1996) 133   DOI   ScienceOn
12 S. F. Luk, T. P. Leung, W. S. Miu, I. Pashby, J. Mat. Processing Tech., 91 (1999) 245   DOI
13 M. Heitkemper, C. Bohne, A. Pyzalla, A. Fischer, Int. J. Fatigue, 25 (2003) 101   DOI   ScienceOn