Browse > Article

Growth of SiC Nanorods Using Fe and Hexamethyldisilabutane  

Rho Dae-Ho (Korea University, Department of Materials Science and Engineering)
Kim Jae-Soo (Korea Institute of Science and Technology, Metal Processing Research Center)
Byun Dong-Jin (Korea University, Department of Materials Science and Engineering)
Yang Jae-Woong (Daijin University, Department of Advance Materials Science and Engineering)
Kim Na-Ri (Korea University, Department of Materials Science and Engineering)
Publication Information
Journal of the Korean institute of surface engineering / v.36, no.3, 2003 , pp. 234-241 More about this Journal
Abstract
SiC nanorod was synthesized directly on Si substrate using hexamethyldisilabutane and Fe catalyst with (111) direction. Fe acted a liquid catalyst at growth condition. Grown SiC nanorod has about 30nm diameter and $5{\mu}m$ length. SiC nanorod growth was divided by trro regions with diameter distribution. This diameter distribution were occurred by surface deposition at as - grown nanorod's surface by limitation of growth rate. At higher temperature, these division not occurred. Growth temperature and flow rates affected diameter and morphology of nanorods. With increasing flow rate of source gas, nanorod's diameter increased because of deactivation effect. Case of the increasing temperature, growth rate increased so deactivation did not occurred.
Keywords
SiC; Nanorod; VLS; HMDS; CVD; Fe;
Citations & Related Records
연도 인용수 순위
  • Reference
1 O. Kordina, L. O. Bjorketun, A. Henry, C.Hallin, R. C. Glass, L. Hultman, J. E. Su-ndgren, E. Janzen, J. Cryst. Gr., 154 (1995)303   DOI   ScienceOn
2 C. C. Tang, S. S. Fan, H. Y. Dang, J. HZhao, C. Zhang, P. Li, Q. Gu, J. Cryst. Gr.,223 (2001) 125   DOI   ScienceOn
3 Y. B. Li, S. S. Xie, X. P. Zou, D.S. tang, Z. Q.Liu, W. Y. Zhou, G. Wang, J. Cryst. Gr., 223(2000) 125
4 C. C. Tang, S. S. Fan H. Y. Dang, J. H. Zhao,C. Zhang P. Li, Q. Gu, J. Cryst. Gr 210(2000) 595   DOI   ScienceOn
5 E. I. Givargizov, J. Cryst. Gr., 31 (1975) 20   DOI   ScienceOn
6 Y. H. Tang, Y. F. Zhang, N. Wang, C. S. Lee,X. D. Han, I. Bello, S. T. Lee, J. Appl. Phys.,85 (1999) 7981   DOI
7 W. Shi, Y. Zheng, H. Peng, N. Wang, C. S.Lee, S. T. Lee, J. Am. Ceram. Soc., 83(2000) 3228   DOI   ScienceOn
8 S. Nishnino, H. Suhara, H. Ono, H. Matsuna-mi, J. Appl. Phys., 61 (1987) 4889   DOI
9 J. M. Bonard, H. Kind, T. Stockli, L. O. NiIson, Solid-State Electronics, 45 (201) 893   DOI   ScienceOn
10 H. J. Dai, E. W. Wang, Y..Z. Lu, S. S. Fang,C. M. Lieber, Nature, 375 (1995) 769   DOI
11 E. I. Givargizov, J. Cryst. Gr., 20 (1973) 217   DOI   ScienceOn
12 I. C. Leu, M. H. Hon, J. Cryst. Gr., 236(2002) 171   DOI   ScienceOn
13 Ishizaka. A, Shiraki. Y, J. Electrochem. Soc.,133 (1986) 166
14 Z. W. Pan, S. S. Xie, L. F. Sun, G. Wang,Chem Phys. Lett., 299 (1999) 97   DOI   ScienceOn
15 G. W. Meng, L. D. Zhang, C. M. Mo, F. Phi-llipp, Y. Qin, H. J. Li, S. P. Feng, S. Y. Zha-ng, Mater. Res. Bull., 34 (1999) 783   DOI   ScienceOn
16 J. Lahaye, D. Badie, J. Ducret, Carbon, 15(1977) 87   DOI   ScienceOn
17 J. H. Boo, K. S. Yu, Y. Kim, S. H. Yeon. J. N. Jung, Chem. Mater., 7 (1995) 694   DOI   ScienceOn