Browse > Article
http://dx.doi.org/10.7236/JIIBC.2020.20.5.31

Metamaterial Absorber Composed of Multi-layered Sub-wavelength Unit Cell  

Kim, Hyung Ki (Defense Industry Technology Center)
Publication Information
The Journal of the Institute of Internet, Broadcasting and Communication / v.20, no.5, 2020 , pp. 31-37 More about this Journal
Abstract
In this paper, we propose a novel sub-wavelength unit cell metamaterial absorber using multi-layer structure. The proposed absorber consists of 4 layers, and each layer has a spiral resonator connected by a via hole. This structure increases inductance of the unit cell, and therefore the resonant frequency can shift to lower frequency. We optimized the proposed absorber, and the electrical size of the unit cell is dramatically reduced to 0.013 times of the wavelength. The performance of the proposed absorber is demonstrated with full-wave simulation and measurement results. An absorption rate exceeding 97% is achieved at 1.74GHz. In addition, the proposed absorber attains a high absorption rate of 90% for different polarization and incident angles.
Keywords
absorber; electric LC resonator; metamaterial; subwavelength structure;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 H. Lee, "Design of an electrically small antenna using Metamaterial Structure", The Journal of Korea Institute of Information, Electronics, and Communication Technology, Vol. 3, No. 1, pp. 24-30, Mar 2010.
2 J. Lee, M. Hong, J. Oh, W. Yoon, "Design of a S-band Oscillator Using Vertical Split Ring Resonator", Journal of Korean Institute of Information Technology, Vol. 17, No. 3, pp. 43-50, Mar 2019.   DOI
3 S. Shahparnia, O. M. Ramahi, "Electromagnetic Interference (EMI) Reduction From Printed Circuit Boards (PCB) Using Electromagnetic Bandgap Structures", IEEE Trans. Electromagn. Compat., Vol. 46, No. 4, pp.580-587, Nov 2004. DOI: https://doi.org/10.1109/TEMC.2004.837671   DOI
4 N. Fang, H. Lee, C. Sun, X. Zhang, "Sub-Diffraction-Limited Optical Imaging with a Silver Superlens", Science, Vol. 308, No. 5721, pp. 534-537, Apr 2005. DOI: https://doi.org/10.1126/science.1108759   DOI
5 Z. Yang, H. M. Dai, N. H. Chan, G. C. Ma, P. Sheng, "Acoustic metamaterial panels for sound attenuation in the 50-1000 Hz regime", Appl. Phys. Lett., Vol. 96, No. 041906, Jan 2010. DOI: https://doi.org/10.1063/1.3299007
6 S. Guenneau, A. Movchan, G. Petursson, S. A. Ramakrishna, "Acoustic metamaterials for sound focusing and confinement", New Journal of Physics, Vol. 9, No. 399, Nov 2007. DOI: https://doi.org/10.1088/1367-2630/9/11/399
7 J. Y. Shin, J. H. Oh, "The microwave absorbing phenomena of ferrite microwave absorbers", IEEE Trans. Magn., Vol. 29, No. 6, Nov 1993. DOI: https://doi.org/10.1109/20.281188
8 Y. Zhu, J. Hu, X. Fan, J. Yang, B. Liang, X. Zhu, J. Cheng, "Fine manipulation of sound via lossy metamaterials with independent and arbitrary reflection amplitude and phase", Nature communications, Vol. 9, No. 1632, 2018. DOI: https://doi.org/10.1038/s41467-018-04103-0
9 N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, W. J. Padilla, "Perfect metamaterial absorber", Phys. Rev. Lett., Vol. 100, No. 207402, May 2008. DOI: https://link.aps.org/doi/10.1103/PhysRevLett.100.207402
10 M. Park, J. Choi, S. Kim, "Wide bandwidth pyramidal absorbers of granular ferrite and carbonyl iron powders", IEEE Trans. Magn., Vol. 36, No. 5, Sep 2000. DOI: https://doi.org/10.1109/20.908766
11 K. Hatakeyama, T. Inui, "Electromagnetic wave absorber using ferrite absorbing material dispersed with short metal fibers", IEEE Trans. Magn., Vol. MAG-20, No. 5, Sep 1984. DOI: https://doi.org/10.1109/TMAG.1984.1063424
12 D. Kim, Y. Yoon, K. Jo, G. Jung, C. An, "Effects of sheet thickness on the electromagnetic wave absorbing characterization of Li0.375Ni0.375Zn0.25-ferrite composite as a radiation absorbent material", J. Electromagn. Eng. Sci., Vol. 16, No. 3, pp. 150-158, Jul 2016. DOI: http://dx.doi.org/10.5515/JKIEES.2016.16.3.150   DOI
13 J. W. Head, "The design of gradual transition (wedge) absorbers for a free-field room", J. Appl. Phys., Vol. 16, pp. 1009-1014, 1965. DOI: https://doi.org/10.1088/0508-3443/16/7/314
14 Y. J. Yoo, H. Y. Zheng, Y. J. Kim, J. Y Rhee, J. Kang, K. W. Kim, H. Cheong, Y. H. Kim, Y. P. Lee, "Flexible and elastic metamaterial absorber for low frequency, based on small-size unit cell", Appl. Phys. Lett., Vol. 105, No. 041902, Jul 2014. DOI: https://doi.org/10.1063/1.4885095
15 L. J. du Toit, "The design of Jauman absorbers", IEEE Antennas Propag. Mag., Vol. 36, No.6, pp.17-25, Dec 1994. DOI: https://doi.org/10.1109/74.370526   DOI
16 E. F. Knott, C. D. Lunden, "The two-sheet capacitive Jaumann absorber", IEEE Trans. Antennas Propagat., Vol. 43, No. 11, pp. 1339-1343, Nov 1995. DOI: https://doi.org/10.1109/8.475112   DOI
17 Y. Q. Xu, P. H. Zhou, H. B. Zhang, L. Chen, L. J. Deng, "A wide-angle planar metamaterial absorber based on split ring resonator coupling", J. Appl. Phys., Vol. 110, No. 044102, Aug 2011. DOI: https://doi.org/10.1063/1.3622675
18 H. K. Kim, D. Lee, S. Lim, "Wideband-switchable metamaterial absorber using injected liquid metal", Sci. Rep., Vol. 6, No. 31823, Aug 2016. DOI: https://doi.org/10.1038/srep31823
19 M. Yoo, H. K. Kim, S. Lim, "Angular-and polarization-insensitive metamaterial absorber using subwavelength unit cell in multilayer technology", IEEE Antennas Wirel. Propag. Lett. Vol. 15, pp. 414-417, Jul 2016. DOI: https://doi.org/10.1109/LAWP.2015.2448720   DOI
20 B. X. Khuyen, B. S. Tung, N. V. Dung, Y. J. Yoo, Y. J. Kim, K. W. Kim, V. D. Lam, J. G. Yang, Y. Lee, "Size-efficient metamaterial absorber at low frequencies: Design, fabrication, and characterization", Appl. Phys., Vol. 117, No. 243105, Jun 2015. DOI: https://doi.org/10.1063/1.4923053