Browse > Article
http://dx.doi.org/10.7236/JIIBC.2016.16.1.239

Implementation of Polarization-Insensitive Directional Coupler using Curved Waveguides  

Ho, Kwang-Chun (Dept. of ICs Engineering, Hansung University)
Publication Information
The Journal of the Institute of Internet, Broadcasting and Communication / v.16, no.1, 2016 , pp. 239-244 More about this Journal
Abstract
The polarization characteristics of polarization-insensitive directional coupler based on double sandwiched rib-type and curved waveguides are explored in detail by using conformal transformation method (CTM) and longitudinal modal transmission-line theory(L-MTLT). To obtain the polarization-insensitive condition of polarization-insensitive curved directional coupler(PI-CDC), the coupling length and coupling efficiency according to the inner radius of PI-CDC are analyzed for quasi-TE and quasi-TM modes. The numerical results show that the PI-CDC with a few micrometer scales can be realized by properly choosing the curvature and structural and material parameters of double sandwiched layers. Furthermore, the mode profiles propagating through PI-CDC are evaluated, and the influence on coupler performance has been investigated.
Keywords
Polarization-Insensitive Coupler; Curved Waveguide; Conformal Mapping;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 E. A. J. Marcatili, "Bends in optical dielectric guides", Bell Sys. Tech. J. Vol. 48, pp. 2103-2132, 1969.   DOI
2 M. Heiblum and J. H. Harris, "Analysis of curved waveguides by conformal transformation", IEEE J. Quantum Electron. Vol. QE-11, pp. 75-83, 1975.
3 T. Yamamoto and M. Koshiba, "Numerical analysis of curvature loss in optical waveguides by finite-element method", J. Lightwave Technol. Vol. 11, pp. 1579-1583, 1993.   DOI
4 L. Prkna, M. Hubalek and J. Ctyroky, "Vectorial eigenmode solver for bentwaveguides based on mode matching", IEEE Photon. Technol. Lett. Vol. 13, pp. 2057-2059, 2004.
5 Details available from www.rsoftinc.com.
6 Details available from www.rsoftinc.com.
7 S. T. Peng and A. Oliner, "Guidance and Leakage Properties of a Class of Open Dielectric Waveguides: Part I-Mathematical Formulations", IEEE Trans. MTT, Vol. 29, No. 9, pp. 843-855, 1981.   DOI
8 K. C. Ho, and K. Ho, "Longitudinal Modal Transmission-Line Theory (L-MTLT) of Multilayered Periodic Waveguides", IEICE Trans. Electronics, Vol. E88-C, No. 2, pp. 270-274, 2005.   DOI
9 K. C. Ho, "Implementation of Distributed Feedback Filters using Cascaded Gratings with Different Period", The J. of IWIT, Vol. 13, No. 1, pp. 77-82, 2013.
10 J. O. Park and W. K. Jang, "Optical metrology for resonant surface acoustic wave in RF device", J. of the Korea Academia-Industrial cooperation Society, Vol. 11, pp. 3435-3440, 2010.   DOI
11 J. Lim, J. Koo, J. Lee, S. M. Han, and D. Ahn, "An Efficient Design and Parameteric Study on the Transmission Lines with Substrate Integrated Artificial Dielectric", The J. of Korean Institute of Information Technology, Vol. 8, pp. 53-59, 2010.