Browse > Article
http://dx.doi.org/10.15616/BSL.2020.26.3.217

The Expression of Corazonin Neurons in Larvae Stage of Scuttle Fly  

Park, Hohyun (Department of Biomedical Laboratory Science, Mokpo Science University)
Abstract
Scuttle fly which moves abruptly after standing for a while and stop suddenly to rush off again, is a fly species in the Phoridae family. This species like rotten organic materials and it is known to proliferate even in the industrial materials including organic solvents. These characteristic behaviors of the scuttle fly seem to be related to muscular and nervous system or neurotransmitters. Thus, we focused at the neurotransmitter, corazonin (Crz) that is known to be related to resistance to stress and investigated the developmental process of the neurons in the scuttle fly. Corazonin is a neuropeptide being expressed in the central nervous system (CNS) and is known to control mainly physiological functions and behaviors. Its many functions that have been proposed are still in controversy. In this studies, we found that there are three groups of corazoninergic neurons in the larval CNS of the scuttle fly and these neurons undergo distinguishable changes through metamorphic process compared to different fly species. Larva has 3 pairs of Crz neurons at the dorsolateral area of the brain, 1 pair at the dorsomedial brain and 8 pairs at the ventral nerve cord.
Keywords
Corazonin; Scuttle fly; Lavae stage; Central nervous system;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Verleyen P, Huybrechts J, Baggerman G, Van Lommel A, De Loof A, Schoofs L. SIFamide is a highly conserved neuropeptide: a comparative study in different insect species. Biochem Biophys Res Commun. 2004. 320: 334-341.   DOI
2 Winbush A, Weeks JC. Steroid-triggered, cell-autonomous death of a Drosophila motoneuron during metamorphosis. Neural Dev. 2011. 6: 15.   DOI
3 Veenstra JA. Presence of corazonin in three insect species, and isolation and identification of [His7] corazonin from Schistocerca americana. Peptides. 1991. 12: 1285-1289.   DOI
4 Veenstra JA. Does Corazonin signal nutritional stress in insects? Insect Biochem Mol Biol. 2009. 39: 755-762.   DOI
5 Shiga S, Davis NT, Hildebrand JG. Role of neurosecretory cells in the photoperiodic induction of pupal diapause of the tobacco hornworm Manduca sexta. J Comp Neurol. 2003. 462: 275-285.   DOI
6 Taghert PH, Veenstra JA. Drosophila neuropeptide signaling. Adv Genet. 2003. 49: 1-65.   DOI
7 Tanaka S. Endocrine mechanism of controlling body-color polymorphism in locusts. Arch Insect Biochem Physiol. 2001. 47: 139-149.   DOI
8 Tanaka S, Zhu DH, Hoste B, Breuer M. The dark-color inducing neuropoptide, His7-corazonin, causes a shift in morphometric characteristics towards the gregarious phase in isolated-reared (solitarious) Locusta migratoria. J. Insect Physiol. 2002a. 48: 1065-1074.   DOI
9 Roller L, Tanaka Y, Tanaka S. Corazonin and corazonin-like substances in the central nervous system of the Pterygote and Apterygote insects. Cell Tissue Tes. 2003. 312: 393-406.   DOI
10 Roller L, Tanaka S, Kimura K, Satake H, Tanaka Y. Molecular cloning of [Thr4, His7]-corazonin(Apime-corazonin) and its distribution in the central nervous system of the honey bee Apis melifera (Hymenoptera; Apidae). Appl Entomol Zool. 2006. 41: 331-338.   DOI
11 Santos JG, Vomel M, Struck R, Homberg U, Nassel DR, Wegener C. Neuroarchitecture of peptidergic systems in the larval ventral ganglion of Drosophila melanogaster. PLoS ONE. 2007. 2: e695.   DOI
12 Sha K, Conner WC, Choi DY, Park JH. Characterization, expression, and evolutionary aspects of Corazonin neuropeptide and its receptor from the House Fly, Musca domestica (Diptera: Muscidae). Gene. 2012. 497: 191-199.   DOI
13 Gruntenko N, Chentsova NA, Bogomolova EV, Karpova EK, Glazko GV. The effect of mutations altering biogenic amine metabolism in Drosophila on viability and the response to environmental stresses. Arch Insect Biochem Pysiol. 2004. 55: 55-67.   DOI
14 Hansen IA, Sehnal F, Meyer SR, Scheller K. Corazonin gene expression in the waxmoth Galleria mellonella. Insect Mol Biol. 2001. 10: 341-346.   DOI
15 Hauser F, Cazzamali G, Williamson M, Blenau W, Grimmelikhuijzen CJ. A review of neurohormone GPCRs present in the fruitfly Drosophila melanogaster and the honey bee Apis mellifera. Prog Neurobiol. 2006. 80: 1-19.   DOI
16 Hokfelt T. Neuropeptides in perspective: the last ten years. Neuron. 1991. 7: 867-879.   DOI
17 Terhzaz S, Rosay P, Goodwin SF, Veenstra JA. The neuropeptide SIFamide modulates sexual behavior in Drosophila. Biochem Biophys Res Commun. 2007. 352: 305-310.   DOI
18 Tan Y, Yamada-Mabuchi M, Arya R, St Pierre S, Tang W, Tosa M, Brachmann C, White K. Coordinated expression of cell death genes regulates neuroblast apoptosis. Development. 2011. 138: 2197-2206.   DOI
19 Tawfik AI, Tanaka S, De Loof A, Schoofs L, Baggerman G, Waelkens E, Derua R, Milner Y, Yerushalmi Y, Pener MP. Identification of the gregarization - associated dark - pigmentotropin in locusts through an albino mutant. Proc Natl Acad Sci U S A. 1999. 96: 7083-7087.   DOI
20 Tayler TD, Pacheco DA, Hergarden AC, Murthy M, Anderson DJ. A neuropeptide circuit that coordinates sperm transfer and copulation duration in Drosophila. Proc Natl Acad Sci U S A. 2012. 109: 20697-20702.   DOI
21 Truman JW. Metamorphosis of the central nervous system of Drosophila. J Neurobiol. 1990. 21: 1072-1084.   DOI
22 Veenstra JA. Isolation and structure of corazonin, a cardio-active peptide from the America cockroach. FEBS Lett. 1989. 250: 231-234.   DOI
23 Cantera R, Veenstra JA, Nassel DR. Post-embryonic development of Corazonin-containing neurons and neruosecretory cells in the Blowfly, Phormia terraenovae. J Comp Neurol. 1994. 350: 559-572.   DOI
24 Cazzamali G, Saxild N, Grimmelikhuijzen C. Molecular cloning and functional expression of a Drosophila corazonin receptor. Biochem Biophys Res Commun. 2002. 298: 31-36.   DOI
25 Draizen TA, Ewer J, Robinow S. Genetic and hormonal regulation of the death of peptidergic neurons in the Drosophila central nervous system. J Neurobiol. 1999. 38: 455-465.   DOI
26 Horodyski FM, Ewer J, Riddiford LM, Truman JW. Isolation, characterization and expression of the eclosion hormone gene of Drosophila melanogaster. Eur J Biochem. 1993. 215: 221-228.   DOI
27 Choi SH. "The Regulation of Neuropeptide Corazonin and Its Functional Analyses in Drosophila melanogaster." PhD diss., University of Tennessee. 2009.
28 Choi SH, Lee G, Monahan P, Park JH. Spatial regulation of Corazonin neuropeptide expression requires multiple cis-acting elements in Drosophila melanogaster. J Comp Neurol. 2008. 507: 1184-1195.   DOI
29 Choi YJ, Lee G, Park JH. Programmed cell death mechanisms of identifiable peptidergic neurons in Drosophila melanogaster. Development. 2006. 133: 2223-2232.   DOI
30 Choi YJ, Lee G, Hall JC, Park JH. Comparative analysis of Corazonin-encoding genes (Crz's) in Drosophila species and functional insights into Crz-expressing neurons. J Comp Neurol. 2005. 482: 372-385.   DOI
31 Gauthier SA, Hewes RS. Transcriptional regulation of neuropeptide and peptide hormone expression by the Drosophila dimmed and cryptocephal genes. J Exp Biol. 2006. 209: 1803-1815.   DOI
32 Yerushalmi YK, Bhargava C, Gilon, Pener MP. Structure-activity relations of the dark-colour-inducing neurohormone of locusts. Insect Biochem Mol Biol. 2002. 32: 909-917.   DOI
33 Zhao Y, Bretz CA, Hawksworth SA, Hirsh J, Johnson EC. Corazonin neurons function in sexually dimorphic circuitry that shape behavioral responses to stress in Drosophila. PLoS One. 2010. 5: e9141.   DOI
34 Lundell MJ, Lee HK, Perez E, Chadwell L. The regulation of apoptosis by Numb/Notch signaling in the serotonin lineage of Drosophila. Development. 2003. 130: 4109-4121.   DOI
35 Kim J, Kim JW, Park JH. Characterization and expression of corazonin gene in the scuttle fly, Megaselia scalaris. GenBank. 2013. KF318884.1.
36 Hummon AB, Richmond TA, Verleyen P, Baggerman G, Huybrechts J, Ewing MA, Vierstraete E, Rodriguez-Zas SL, Schoofs L, Robinson GE. From the genome to the proteome: uncovering peptides in the Apis brain. Science. 2006. 314: 647-649.   DOI
37 Isabel G, Martin JR, Chidami S, Veenstra JA, Rosay P. AKHproducing neuroendocrine cell ablation decreases trehalose and induces behavioral changes in Drosophila. Am J Physiol Regul Integr Comp Physiol. 2005. 288: R531-R538.   DOI
38 Karcavich R, Doe CQ. Drosophila neuroblast 7-3 cell lineage: a model system for studying programmed cell death, Notch/Numb signaling, and sequential specification of ganglion mother cell identity. J Comp Neurol. 2005. 481: 240-251.   DOI
39 Kimura KI, Truman JW. Postmetamorphic cell death in the nervous and muscular systems of Drosophila melanogaster. J Neurosci. 1990. 10: 403-411.   DOI
40 Lee G, Kim KM, Kikuno K, Wang Z, Choi YJ, Park JH. Developmental regulation and functions of the expression of the neuropeptide corazonin in Drosophila melanogaster. Cell Tissue Res. 2008. 331: 659-673.   DOI
41 Baraban SC, Tallent MK. Interneuron Diversity series: Interneuronal neuropeptides - endogenous regulators of neuronal excitability. Trends Neurosci. 2004. 27: 135-142.   DOI
42 Lee G, Park JH. Hemolymph sugar homeostasis and starvationinduced hyperactivity affected by genetic manipulations of the adipokinetic hormone-encoding gene in Drosophila melanogaster. Genetics. 2005. 167: 311-323.   DOI
43 Lee G, Wang Z, Sehgal R, Chen CH, Kikuno K, Hay B, Park JH. Drosophila caspases involved in developmentally regulated programmed cell death of peptidergic neurons during early metamorphosis. J Comp Neurol. 2011. 519: 34-48.   DOI
44 McNabb SL, Baker JD, Agapite J, Steller H, Riddiford LM, Truman JW. Disruption of a behavioral sequence by targeted death of peptidergic neurons in Drosophila. Neuron. 1997. 19: 813-823.   DOI
45 Allan DW, Park D, St Pierre SE, Taghert PH, Thor S. Regulators acting in combinatorial codes also act independently in single differentiating neurons. Neuron. 2005. 45: 689-700.   DOI
46 Allan DW, St Pierre SE, Miguel-Aliaga I, Thor S. Specification of neuropeptide cell identity by the integration of retrograde BMP signaling and a combinatorial transcription factor code. Cell. 2003. 113: 73-86.   DOI
47 Altstein M, Nassel DR. Neuropeptide signaling in insects (Geary TG, Maule AG. Eds). Neuropeptide Systems as Targets for Parasite and Pest Control. 2010. pp. 155-165.
48 Awad TA, Truman JW. Postembryonic development of the midline glia in the CNS of Drosophila: proliferation, programmed cell death, and endocrine regulation. Dev Biol. 1997. 187: 283-297.   DOI
49 Benveniste RJ, Thor S, Thomas JB, Taghert PH. Cell type-specific regulation of the Drosophila FMRF-NH2 neuropeptide gene by Apterous, a LIM homeodomain transcription factor. Development. 1998. 125: 4757-4765.   DOI
50 Brodsky MH, Nordstrom W, Tsang G, Kwan E, Rubin GM, Abrams JM. Drosophila p53 binds a damage response element at the reaper locus. Cell. 2000. 101: 103-113.   DOI
51 Nassel DR, Winther AM. Drosophila neuropeptides in regulation of physiology and behavior. Prog Neurobiol. 2010. 92: 42-104.   DOI
52 Neckameyer WS, Weinstein JS. Stress affects dopaminergic signaling pathways in Drosophila melanogaster. Stress. 2005. 9: 117-131.   DOI
53 Park HH, Park MS, Na KJ. Development of Central Nervous System in Scuttle Fly. Korean Clin Lab Sci. 2018. 50: 284-288.   DOI
54 Menzies FM, Tenisetti SC, Min KT. Roles of Drosophila DJ-1 in survival of dopaminergic neurons and oxidative stress. Curr Biol. 2005. 15: 1578-1582.   DOI
55 Nassel DR. Neuropeptides in the nervous system of Drosophila and other insects: multiple roles as neuromodulators and neurohormones. Prog Neurobiol. 2002. 68: 1-84.   DOI
56 Novotny T, Eiselt R, Urban J. Hunchback is required for the specification of the early sublineage of neuroblast 7-3 in the Drosophila central nervous system. Development. 2002. 129: 1027-1036.   DOI
57 O'Shea M, Schaffer M. Neuropeptide function: the invertebrate contribution. Annu Rev Neurosci. 1985. 8: 171-198.   DOI
58 Park HH. The development stages of scuttle fly. Biomedical Science Letters. 2018. 24: 125-129.   DOI
59 Park Y, Kim YJ, Adams ME. Identification of G protein-coupled receptors for Drosophila PRXamide, CCAP, corazonin, and AKH supports a theory of ligand-receptor coevolution. Proc Natl Acad Sci USA. 2002. 99: 11423-11428.   DOI
60 Porras MG, De Loof A, Breuer M, Arechiga H. Corazonin promotes tegumentary pigment migration in the crayfish Procambarus clarkii. Peptides. 2003. 24: 1581-1589.   DOI
61 Rauschenbach IY, Serova L, Timochina I, Chentsova NA, Schumnaja L. Analysis of differences in dopamine content between two lines of Drosophila virilis in response to heat stress. J Insect Physiol. 1993. 39: 761-767.   DOI
62 Robinow S, Talbot WS, Hogness DS, Truman JW. Programmed cell death in the Drosophila CNS is ecdysone-regulated and coupled with a specific ecdysone receptor isoform. Development. 1993. 119: 1251-1259.   DOI
63 Verleyen P, Baggerman G, Mertens I, Vandersmissen T, Huybrechts J, Van Lommel A, De Loof A, Schoofs L. Cloning and characterization of a third isoform of corazonin in the honey bee Apis mellifera. Peptides. 2006. 27: 493-499.   DOI
64 Veenstra JA, Davis NT. Localization of corazonin in the nervous system of the cockroach Periplaneta americana. Cell Tissue Res. 1993. 274: 57-64.   DOI