Browse > Article
http://dx.doi.org/10.15616/BSL.2018.24.1.1

Infection with Citrobacter rodentium in μMT Knockout Mice  

Jo, Minjeong (Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University at Wonju)
Hwang, Soonjae (Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University at Wonju)
Rhee, Ki-Jong (Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University at Wonju)
Abstract
${\mu}MT$ knockout mice are genetically deficient in the transmembrane domain of mu chain of the immunoglobulin M (IgM) heavy chain, resulting in the absence of mature B cells. ${\mu}MT$ knockout mice is an in vivo model system used to clarify the role of B cells in various diseases. Enteropathogenic Escherichia coli (EPEC) induces acute and chronic diarrheal disease, especially in children of developing countries. The formation of attaching and effacing (A/E) lesion is a prominent pathogenic factor in the intestinal epithelium of EPEC infection. The A/E lesion is modulated by genes located on the pathogenic island locus of enterocyte effacement (LEE) which encode a type III secretion system (T3SS) and A/E lesion-related effector proteins. Citrobacter rodentium is a murine pathogen utilized in studying the pathogenic mechanisms of EPEC in human infections. Citrobacter rodentium produce A/E lesion to attach to intestinal epithelium, thus providing a murine model pathogen to study EPEC. Several studies have investigated the pathogenesis of Citrobacter rodentium in the ${\mu}MT$ knockout mice. In this review, we introduce the ${\mu}MT$ murine model in the context of C. rodentium pathogenesis and describe in detail the role of B cells and antibodies in this disease.
Keywords
${\mu}MT$ knockout mice; B lymphocyte; Colitis; Antibodies;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Iguchi A, Thomson NR, Ogura Y, Saunders D, Ooka T, Henderson R, Harris D, Asadulghani M, Kurokawa K, Dean P, Kenny B, Quail MA, Thurston S, Dougan G, Hayashi T, Parkhill J, Frankel G. Complete genome sequence and comparative genome analysis of enteropathogenic Escherichia coli O127: H6 strain E2348/69. Journal of Bacteriology. 2009. 191: 347-354.   DOI
2 Jenkins C, Lawson AJ, Cheasty T, Willshaw GA, Wright P, Dougan G, Frankel G, Smith HR. Subtyping intimin genes from enteropathogenic Escherichia coli associated with outbreaks and sporadic cases in the United Kingdom and Eire. Molecular and Cellular Probes. 2003. 17: 149-156.   DOI
3 Kamada N, Sakamoto K, Seo SU, Zeng MY, Kim YG, Cascalho M, Vallance BA, Puente JL, Nunez G. Humoral immunity in the gut selectively targets phenotypically virulent attachingand-effacing bacteria for intraluminal elimination. Cell Host & Microbe. 2015. 17: 617-627.   DOI
4 Katouli M, Kuhn I, Mollby R. Evaluation of the stability of biochemical phenotypes of Escherichia coli upon subculturing and storage. Journal of General Microbiology. 1990. 136: 1681-1688.   DOI
5 Kenny B. Mechanism of action of EPEC type III effector molecules. International Journal of Medical Microbiology. 2002. 291: 469-477.
6 Kitamura D, Rajewsky K. Targeted disruption of ${\mu}$ chain membrane exon causes loss of heavy-chain allelic exclusion. Nature. 1992. 356: 154-156.   DOI
7 Kitamura D, Roes J, Kuhn R, Rajewsky K. A B cell-deficient mouse by targeted disruption of the membrane exon of the immunoglobulin ${\mu}$ chain gene. Nature. 1991. 350: 423-426.   DOI
8 Klapproth JMA, Sasaki M, Sherman M, Babbin B, Donnenberg MS, Fernandes PJ, Scaletsky ICA, Kalman D, Nusrat A, Williams IR. Citrobacter rodentium lifa/efa1 is essential for colonic colonization and crypt cell hyperplasia in vivo. Infection and Immunity. 2005. 73: 3196.   DOI
9 Maaser C, Housley MP, Iimura M, Smith JR, Vallance BA, Finlay BB, Schreiber JR, Varki NM, Kagnoff MF, Eckmann L. Clearance of Citrobacter rodentium requires B cells but not secretory immunoglobulin A (IgA) or IgM antibodies. Infection and Immunity. 2004. 72: 3315-3324.   DOI
10 Lanata CF, Fischer-Walker CL, Olascoaga AC, Torres CX, Aryee MJ, Black RE, Child Health Epidemiology Reference Group of the World Health O, Unicef. Global causes of diarrheal disease mortality in children <5 years of age: a systematic review. PLoS One. 2013. 8: e72788.   DOI
11 MacDonald E, Dalane PK, Aavitsland P, Brandal LT, Wester AL, Vold L. Implications of screening and childcare exclusion policies for children with shiga-toxin producing Escherichia coli infections: lessons learned from an outbreak in a daycare centre, norway, 2012. BMC Infectious Diseases. 2014. 14: 673.   DOI
12 Mundy R, Girard F, FitzGerald AJ, Frankel G. Comparison of colonization dynamics and pathology of mice infected with enteropathogenic Escherichia coli, enterohaemorrhagic E. coli and Citrobacter rodentium. FEMS Microbiology Letter. 2006. 265: 126-132.   DOI
13 Macpherson AJ, Lamarre A, McCoy K, Harriman GR, Odermatt B, Dougan G, Hengartner H, Zinkernagel RM. Iga production without ${\mu}$ or ${\delta}$ chain expression in developing B cells. Nature Immunology. 2001. 2: 625-631.   DOI
14 Mcdaniel TK, Jarvis KG, Donnenberg MS, Kaper JB. A geneticlocus of enterocyte effacement conserved among diverse enterobacterial pathogens. Proceedings of the National Academy of Sciences of the United States of America. 1995. 92: 1664-1668.   DOI
15 Melchers F, ten Boekel E, Seidl T, Kong XC, Yamagami T, Onishi K, Shimizu T, Rolink AG, Andersson J. Repertoire selection by pre-B-cell receptors and B-cell receptors, and genetic control of B-cell development from immature to mature B cells. Immunology Reviews. 2000. 175: 33-46.   DOI
16 Nagasawa T. Microenvironmental niches in the bone marrow required for B-cell development. Nature Reviews Immunology. 2006. 6: 107-116.   DOI
17 Nataro JP, Kaper JB. Diarrheagenic Escherichia coli. Clinical Microbiology Reviews. 1998. 11: 142-201.
18 Ochoa TJ, Contreras CA. Enteropathogenic Escherichia coli infection in children. Current Opinion in Infectious Diseases. 2011. 24: 478-483.   DOI
19 Pylayeva-Gupta Y, Das S, Handler JS, Hajdu CH, Coffre M, Koralov SB, Bar-Sagi D. Il35-producing B cells promote the development of pancreatic neoplasia. Cancer Discovery. 2016. 6: 247-255.   DOI
20 Royan SV, Jones RM, Koutsouris A, Roxas JL, Falzari K, Weflen AW, Kim A, Bellmeyer A, Turner JR, Neish AS, Rhee KJ, Viswanathan VK, Hecht GA. Enteropathogenic E. coli non-LEE encoded effectors NleH1 and NleH2 attenuate $NF-{\kappa}B$ activation. Molecular Microbiology. 2010. 78: 1232-1245.   DOI
21 Savkovic SD, Villanueva J, Turner JR, Matkowskyj KA, Hecht G. Mouse model of enteropathogenic Escherichia coli infection. Infection and Immunity. 2005. 73: 1161-1170.   DOI
22 Schauer DB, Falkow S. The eae gene of Citrobacter freundii biotype 4280 is necessary for colonization in transmissible murine colonic hyperplasia. Infection and Immunity. 1993. 61: 4654-4661.
23 Shen P, Roch T, Lampropoulou V, O'Connor RA, Stervbo U, Hilgenberg E, Ries S, Dang VD, Jaimes Y, Daridon C, Li R, Jouneau L, Boudinot P, Wilantri S, Sakwa I, Miyazaki Y, Leech MD, McPherson RC, Wirtz S, Neurath M, et al. Il-35-producing B cells are critical regulators of immunity during autoimmune and infectious diseases. Nature. 2014. 507: 366-370.   DOI
24 Simmons CP, Clare S, Ghaem-Maghami M, Uren TK, Rankin J, Huett A, Goldin R, Lewis DJ, MacDonald TT, Strugnell RA, Frankel G, Dougan G. Central role for B lymphocytes and $CD4^{+}$ T cells in immunity to infection by the attaching and effacing pathogen Citrobacter rodentium. Infection and Immunity. 2003. 71: 5077-5086.   DOI
25 Zhang Q, Li Q, Wang C, Li N, Li J. Redistribution of tight junction proteins during EPEC infection in vivo. Inflammation. 2012. 35: 23-32.   DOI
26 Spahn TW, Ross M, von Eiff C, Maaser C, Spieker T, Kannengiesser K, Domschke W, Kucharzik T. $CD4^{+}$ T cells transfer resistance against Citrobacter rodentium-induced infectious colitis by induction of Th 1 immunity. Scandinavian Journal of Immunology. 2008. 67: 238-244.   DOI
27 Tang A, Dadaglio G, Oberkampf M, Di Carlo S, Peduto L, Laubreton D, Desrues B, Sun CM, Montagutelli X, Leclerc C. B cells promote tumor progression in a mouse model of HPV-mediated cervical cancer. Int J Cancer. 2016. 139: 1358-1371.   DOI
28 Turner M. Microbe outbreak panics Europe. Nature. 2011. 474: 137.   DOI
29 Wang L, Ray A, Jiang X, Wang JY, Basu S, Liu X, Qian T, He R, Dittel BN, Chu Y. T regulatory cells and B cells cooperate to form a regulatory loop that maintains gut homeostasis and suppresses dextran sulfate sodium-induced colitis. Mucosal Immunology. 2015. 8: 1297-1312.   DOI
30 Wong AR, Pearson JS, Bright MD, Munera D, Robinson KS, Lee SF, Frankel G, Hartland EL. Enteropathogenic and enterohaemorrhagic Escherichia coli: even more subversive elements. Molecular Microbiology. 2011. 80: 1420-1438.   DOI
31 Barthold SW, Coleman GL, Jacoby RO, Livestone EM, Jonas AM. Transmissible murine colonic hyperplasia. Veterinary Pathology. 1978. 15: 223-236.   DOI
32 Frankel G, Phillips AD, Novakova M, Field H, Candy DC, Schauer DB, Douce G, Dougan G. Intimin from enteropathogenic Escherichia coli restores murine virulence to a Citrobacter rodentium eaeA mutant: induction of an immunoglobulin A response to intimin and EspB. Infection and Immunity. 1996. 64: 5315-5325.
33 Frankel G, Phillips AD, Rosenshine I, Dougan G, Kaper JB, Knutton S. Enteropathogenic and enterohaemorrhagic Escherichia coli: more subversive elements. Molecular Microbiology. 1998. 30: 911-921.   DOI
34 Fruth A, Prager R, Tietze E, Rabsch W, Flieger A. Molecular epidemiological view on shiga toxin-producing Escherichia coli causing human disease in germany: diversity, prevalence, and outbreaks. International Journal of Medical Microbiology. 2015. 305: 697-704.   DOI
35 Goosney DL, DeVinney R, Pfuetzner RA, Frey EA, Strynadka NC, Finlay BB. Enteropathogenic E. coli translocated intimin receptor, Tir, interacts directly with ${\alpha}$-actinin. Current Biology. 2000. 10: 735-738.   DOI
36 Gutzeit C, Magri G, Cerutti A. Intestinal IgA production and its role in host-microbe interaction. Immunology Reviews. 2014. 260: 76-85.   DOI
37 Hardy RR, Li YS, Allman D, Asano M, Gui M, Hayakawa K. B-cell commitment, development and selection. Immunology Reviews. 2000. 175: 23-32.   DOI
38 Harrington L, Srikanth CV, Antony R, Rhee SJ, Mellor AL, Shi HN, Cherayil BJ. Deficiency of indoleamine 2,3-dioxygenase enhances commensal-induced antibody responses and protects against Citrobacter rodentium-induced colitis. Infection and Immunity. 2008. 76: 3045-3053.   DOI
39 Behiry IK, Abada EA, Ahmed EA, Labeeb RS. Enteropathogenic Escherichia coli associated with diarrhea in children in Cairo, Egypt. The Scientific World Journal. 2011. 11: 2613-2619.   DOI
40 Bry L, Brenner MB. Critical role of t cell-dependent serum antibody, but not the gut-associated lymphoid tissue, for surviving acute mucosal infection with Citrobacter rodentium, an attaching and effacing pathogen. The Journal of Immunology. 2004. 172: 433-441.   DOI
41 Cerutti A, Chen K, Chorny A. Immunoglobulin responses at the mucosal interface. Annual Review of Immunology. 2011. 29: 273-293.   DOI
42 Deng W, Li Y, Vallance BA, Finlay BB. Locus of enterocyte effacement from Citrobacter rodentium: sequence analysis and evidence for horizontal transfer among attaching and effacing pathogens. Infection and Immunity. 2001. 69: 6323-6335.   DOI
43 Chen HD, Frankel G. Enteropathogenic Escherichia coli: unravelling pathogenesis. FEMS Microbiology Reviews. 2005. 29: 83-98.   DOI
44 Cleary J, Lai LC, Shaw RK, Straatman-Iwanowska A, Donnenberg MS, Frankel G, Knutton S. Enteropathogenic Escherichia coli (EPEC) adhesion to intestinal epithelial cells: role of bundleforming pili (BFP), EspA filaments and intimin. Microbiology. 2004. 150: 527-538.   DOI
45 Goosney DL, Gruenheid S, Finlay BB. Gut feelings: Enteropathogenic E. coli (EPEC) interactions with the host. Annual Review of Cell and Developmental Biology. 2000. 16: 173-189.   DOI
46 Clements A, Young JC, Constantinou N, Frankel G. Infection strategies of enteric pathogenic Escherichia coli. Gut Microbes. 2012. 3: 71-87.   DOI
47 Croxen MA, Finlay BB. Molecular mechanisms of Escherichia coli pathogenicity. Nature Reviews Microbiology. 2010. 8: 26-38.   DOI
48 Deng W, Puente JL, Gruenheid S, Li Y, Vallance BA, Vazquez A, Barba J, Ibarra JA, O'Donnell P, Metalnikov P, Ashman K, Lee S, Goode D, Pawson T, Finlay BB. Dissecting virulence: systematic and functional analyses of a pathogenicity island. Proceedings of the National Academy of Sciences of the United States of America. 2004. 101: 3597-3602.   DOI
49 Deng W, Yu HB, de Hoog CL, Stoynov N, Li Y, Foster LJ, Finlay BB. Quantitative proteomic analysis of type III secretome of enteropathogenic Escherichia coli reveals an expanded effector repertoire for attaching/effacing bacterial pathogens. Molecular & Cellular Proteomics. 2012. 11: 692-709.   DOI
50 Dupont A, Sommer F, Zhang K, Repnik U, Basic M, Bleich A, Kuhnel M, Backhed F, Litvak Y, Fulde M, Rosenshine I, Hornef MW. Age-dependent susceptibility to enteropathogenic Escherichia coli (EPEC) infection in mice. PLoS Pathogens. 2016. 12: e1005616.   DOI
51 Eckmann L, Stappenbeck TS. IgG "detoxes" the intestinal mucosa. Cell Host & Microbe. 2015. 17: 538-539.   DOI
52 Hoffman W, Lakkis FG, Chalasani G. B cells, antibodies, and more. Clinical Journal of American Society of Nephrology. 2016. 11: 137-154.   DOI
53 Hooper LV, Macpherson AJ. Immune adaptations that maintain homeostasis with the intestinal microbiota. Nature Reviews Immunology. 2010. 10: 159-169.   DOI