Browse > Article

Assay System for N-acylethanolamines Degradation Enzyme, N-acylethanolamine-hydrolyzing Acid Amidase  

Kim, Dae-Woong (Department of Life Science, Kyonggi University)
Kim, Gun-Joong (Department of Chemistry, Hankuk University of Foreign Studies)
Kim, Hae-Jo (Department of Chemistry, Hankuk University of Foreign Studies)
Ghil, Sung-Ho (Department of Life Science, Kyonggi University)
Abstract
N-acylethanolamines (NAEs) including endocannabinoids, anadamide, are long chain fatty acid ethanolamines and express ubiquitously in animal and plant tissues. NAEs have several pharmacological effects including anti-inflammatory, analgesic and anorexic effects. The levels of NAEs in tissues are strictly regulated by synthesizing and hydrolyzing enzymes because NAEs are not stored in the cell but rather made on demand. NAEs are hydrolyzed to free fatty acids and ethanolamines by fatty acid amide hydrolase and N-acylethanolamine-hydrolyzing acid amidase (NAAA). Here, we suggest the fluorescence-based assay system for NAAA. We developed N-(4-methy-2-oxo-2H-chromen-7-yl)palmitamide (PAAC) as a fluorogenic substrate for NAAA and we also generated NAAA stably expressing COSM6 cell line. When extracts of cells expressing NAAA were incubated with PAAC, NAAA specifically hydrolyzed PAAC to palmitic acids and fluorogenic dye, coumarin. Release of coumarin was monitored by using fluorometer. NAAA hydrolyzed PAAC with an apparent Km of $20.05{\mu}M$ and Vmax of 32.18 pmol/mg protein/min. This assay system can be used to develop inhibitors or activators of NAAA.
Keywords
Coumarin; Endocannabinoid; N-acylethanolamines; N-acylethanolamine-hydrolyzing acid amidase; Substrate;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Ahn K, Johnson DS, Fitzgerald LR, Liimatta M, Arendse A, Stevenson T, Lund ET, Nugent RA, Nomanbhoy TK, Alexander JP, Cravatt BF. Novel mechanistic class of fatty acid amide hydrolase inhibitors with remarkable selectivity. Biochemistry 2007. 46: 13019-13030.   DOI   ScienceOn
2 Boldrup L, Wilson SJ, Barbier AJ, Fowler CJ. A simple stopped assay for fatty acid amide hydrolase avoiding the use of a chloroform extraction phase. J Biochem Biophys Methods. 2004. 60: 171-177.   DOI   ScienceOn
3 Calignano A, La Rana G, Piomelli D. Antinociceptive activity of the endogenous fatty acid amide, palmitylethanolamide. Eur J Pharmacol. 2001. 419: 191-198.   DOI
4 Cravatt BF, Giang DK, Mayfield SP, Boger DL, Lerner RA, Gilula NB. Molecular characterization of an enzyme that degrades neuromodulatory fatty-acid amides. Nature. 1996. 384: 83-87.   DOI   ScienceOn
5 Cravatt BF, Lichtman AH. Fatty acid amide hydrolase: an emerging therapeutic target in the endocannabinoid system. Curr Opin Chem Biol. 2003. 7: 469-475.   DOI   ScienceOn
6 Darmani NA, Izzo AA, Degenhardt B, Valenti M, Scaglione G, Capasso R, Sorrentini I, Di Marzo V. Involvement of the cannabimimetic compound, N-palmitoyl-ethanolamine, in inflammatory and neuropathic conditions: review of the available pre-clinical data, and first human studies. Neuropharmacology 2005. 48: 1154-1163.   DOI   ScienceOn
7 Deutsch DG, Chin SA. Enzymatic synthesis and degradation of anandamide, a cannabinoid receptor agonist. Biochem Pharmacol. 1993. 46: 791-796.   DOI   ScienceOn
8 Di Marzo V. Targeting the endocannabinoid system: to enhance or reduce? Nat Rev Drug Discov. 2008. 7: 438-455.   DOI   ScienceOn
9 Ganley OH, Graessle OE, Robinson HJ. Anti-inflammatory activity on compounds obtained from egg yolk, peanut oil, and soybean lecithin. J Lab Clin Med. 1958. 51: 709-714.
10 Kim DW, Kim GJ, Kim HJ, Ghil SH. Fluorescence-based assay system for endocannabinoid degradation enzyme, fatty acid amide hydrolase. J Exp Biomed Sci. 2010. 16: 279-285.
11 Kuehl Jr FA, Jacob TA, Ganley OH, Ormond RE, Meisinger MAP. The identification of N-(2-hydroxyethyl)-palmitamide as a naturally occurring anti-inflammatory agent. J Am Chem Soc. 1957. 79: 5577-5578.   DOI
12 Lambert DM, Vandevoorde S, Jonsson KO, Fowler CJ. The palmitoylethanolamide family: a new class of antiinflammatory agents? Curr Med Chem. 2002. 9: 663-674.   DOI   ScienceOn
13 Lo Verme J, Gaetani S, Fu J, Oveisi F, Burton K, Piomelli D. Regulation of food intake by oleoylethanolamide. Cell Mol Life Sci. 2005. 62: 708-716.   DOI   ScienceOn
14 Maccarrone M, Bari M, Agro AF. A sensitive and specific radiochromatographic assay of fatty acid amide hydrolase activity. Anal Biochem. 1999. 267: 314-318.   DOI   ScienceOn
15 McKinney MK, Cravatt BF. Structure and function of fatty acid amide hydrolase. Annu Rev Biochem. 2005. 74: 411-432.   DOI   ScienceOn
16 Omeir RL, Chin S, Hong Y, Ahern DG, Deutsch DG. Arachidonoyl ethanolamide-[1,2-14C] as a substrate for anandamide amidase. Life Sci. 1995. 56: 1999-2005.   DOI   ScienceOn
17 Overton HA, Babbs AJ, Doel SM, Fyfe MCT, Gardner LS, Griffin G, Jackson HC, Procter MJ, Rasamison CM, Tang-Christensen M, Widdowson PS, Williams GM, Reynet C. Deorphanization of a G protein-coupled receptor for oleoylethanolamide and its use in the discovery of small-molecule hypophagic agents. Cell Metab. 2006. 3: 167-175.   DOI   ScienceOn
18 Rahn EJ, Thakur GA, Wood JA, Zvonok AM, Makriyannis A, Hohmann AG. Pharmacological characterization of AM1710, a putative cannabinoid CB2 agonist from the cannabilactone class: antinociception without central nervous system sideeffects. Pharmacol Biochem Behav. 2011. 98: 493-502.   DOI   ScienceOn
19 Rodriguez de Fonseca F, Navarro M, Gomez R, Escuredo L, Nava F, Fu J, Murillo-Rodriguez E, Giuffrida A, LoVerme J, Gaetani S, Kathuria S, Gall C, Piomelli D. An anorexic lipid mediator regulated by feeding. Nature 2001. 414: 209-212.   DOI
20 Ramarao MK, Murphy EA, Shen MW, Wang Y, Bushell KN, Huang N, Pan N, Williams C, Clark JD. A fluorescence-based assay for fatty acid amide hydrolase compatible with highthroughput screening. Anal Biochem. 2005. 343: 143-151.   DOI   ScienceOn
21 Solorzano C, Zhu C, Battista N, Astarita G, Lodola A, Rivara S, Mor M, Russo R, Maccarrone M, Antonietti F, Duranti A, Tontini A, Cuzzocrea S, Tarzia G, Piomelli D. Selective N-acylethanolamine-hydrolyzing acid amidase inhibition reveals a key role for endogenous palmitoylethanolamide in inflammation. Proc Natl Acad Sci U S A. 2009. 106: 20966-20971.   DOI   ScienceOn
22 Sugiura T, Kishimoto S, Oka S, Gokoh M. Biochemistry, pharmacology and physiology of 2-arachidonoylglycerol, an endogenous cannabinoid receptor ligand. Prog Lipid Res. 2006. 45: 405-446.   DOI   ScienceOn
23 Terrazzino S, Berto F, Dalle Carbonare M, Fabris M, Guiotto A, Bernardini D, Leon A. Stearoylethanolamide exerts anorexic effects in mice via down-regulation of liver stearoyl-coenzyme A desaturase-1 mRNA expression. FASEB J. 2004. 18: 1580-1582.   DOI
24 Tsuboi K, Sun Y-X, Okamoto Y, Araki N, Tonai T, Ueda N. Molecular characterization of N-acylethanolamine-hydrolyzing acid amidase, a novel member of the choloylglycine hydrolase family with structural and functional similarity to acid ceramidase. J Biol Chem. 2005. 280: 11082-11092.   DOI
25 Tsuboi K, Takezaki N, Ueda N. Chem Biodivers. The N-acylethanolamine-hydrolyzing acid amidase (NAAA). 2007. 4: 1914-1925.   DOI   ScienceOn
26 Ueda N, Tsuboi K, Uyama T. N-acylethanolamine metabolism with special reference to N-acylethanolamine-hydrolyzing acid amidase (NAAA). Prog Lipid Res. 2010. 49: 299-315.   DOI   ScienceOn
27 Wang Y, Ramirez F, Krishnamurthy G, Gilbert A, Kadakia N, Xu J, Kalgaonkar G, Ramarao MK, Edris W, Rogers KE, Jones PG. High-throughput screening for the discovery of inhibitors of fatty acid amide hydrolase using a microsome-based fluorescent assay. J Biomol Screen. 2006. 11: 519-527.   DOI   ScienceOn
28 Wilson SJ, Lovenberg TW, Barbier AJ. A high-throughputcompatible assay for determining the activity of fatty acid amide hydrolase. Anal Biochem. 2003. 318: 270-275.   DOI   ScienceOn