Browse > Article
http://dx.doi.org/10.15324/kjcls.2022.54.3.209

Effects of Saccharomycopsis fibuligera Fermentation on the Antioxidant and Anti-inflammatory Activity of Kerria japonica Flower Extract  

Park, Sang-Nam (Department of Clinical Laboratory Science, Kyungdong University)
Lee, Ok Hee (Department of Health Management, Kyungdong University)
Publication Information
Korean Journal of Clinical Laboratory Science / v.54, no.3, 2022 , pp. 209-216 More about this Journal
Abstract
The effect of Saccharomycopsis fibuligera fermentation on the antioxidant and anti-inflammatory activity of Kerria japonica (K. japonica) extracts was studied. First, the antioxidant activity of the fermented extract was measured using the 2,2-diphenyl1-picrylhydrazyl (DPPH) and 2,2'-azinobis (3-ethylbenzthiazoline 6-sulfonic acid (ABTS) methods. Also, the quantification of polyphenols and flavonoids, which are representative components with antioxidant activity, was performed. The results of the DPPH and ABTS assays showed an increase in the antioxidant activity by 14.39% and 21.74%, respectively, due to fermentation. The polyphenol concentration increased by 10.5%, and the flavonoid concentration increased by 100.0%. In the cell experiment, a cytotoxicity test and a nitric oxide (NO) production inhibitory test were performed using RAW 264.7 cells. Both the control group and the fermentation group showed no cytotoxicity. In the NO production inhibition experiment, the fermentation group showed a 6.85% higher inhibition of NO production compared to the control group. When the inhibitory effects of the extracts on inflammatory cytokine production were assessed, the fermentation group showed 12.4% and 23.5% higher inhibition of interleukin (IL)-1β and IL-6 production, respectively, compared to the control group. In conclusion, due to its potential for inhibiting NO and inflammatory cytokine production, fermented K. japonica extracts could be considered a source of anti-inflammatory compounds.
Keywords
Antioxidant; Cytokine; Fermentation; Inflammation;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Checa J, Aran JM. Reactive oxygen species: drivers of physiological and pathological processes. J Inflamm Resh. 2020;13:1057. https://doi.org/10.2147/JIR.S275595   DOI
2 Evans JA, Johnson EJ. The role of phytonutrients in skin health. Nutrients. 2010;2:903-928. https://doi.org/10.3390/nu2080903   DOI
3 Wu J, Feng JQ, Zhao WM. A new lignan and anti-inflammatory flavonoids from Kerria japonica. J Asian Nat Prod Res. 2008;10: 435-438. https://doi.org/10.1080/10286020801892375   DOI
4 Rekha CR, Vijayalakshmi G. Bioconversion of isoflavone glycosides to aglycones, mineral bioavailability and vitamin B complex in fermented soymilk by probiotic bacteria and yeast. J Appl Microbiol. 2010;109:1198-1208. https://doi.org/10.1111/j.1365-2672.2010.04745.x   DOI
5 Cao H, Chen X, Jassbi AR, Xiao J. Microbial biotransformation of bioactive flavonoids. Biotechnol Adv. 2015;33:214-223. https://doi.org/10.1016/j.biotechadv.2014.10.012   DOI
6 Pekal A, Pyrzynska K. Evaluation of aluminium complexation reaction for flavonoid content assay. Food Anal Methods. 2014;7: 1776-1782. https://doi.org/10.1007/s12161-014-9814-x   DOI
7 Chi Z, Chi Z, Liu G, Wang F, Ju L, Zhang T. Saccharomycopsis fibuligera and its applications in biotechnology. Biotechnol Adv. 2009;27:423-431. https://doi.org/10.1016/j.biotechadv.2009.03.003   DOI
8 Jeyapalan JC, Sedivy JM. Cellular senescence and organismal aging. Mech Ageing Dev. 2008;129:467-474. https://doi.org/10.1016/j.mad.2008.04.001   DOI
9 Pole A, Dimri M, Dimri GP. Oxidative stress, cellular senescence and ageing. AIMS Mol Sc. 2016;3:300-324. https://doi.org/10.3934/molsci.2016.3.300   DOI
10 Di Micco R, Krizhanovsky V, Baker D, d'Adda di Fagagna F. Cellular senescence in ageing: from mechanisms to therapeutic opportunities. Nat Rev Mol Cell Biol. 2021;22:75-95. https://doi.org/10.1038/s41580-020-00314-w   DOI
11 Davalli P, Mitic T, Caporali A, Lauriola A, D'Arca, D. ROS, cell senescence, and novel molecular mechanisms in aging and age-related diseases. Oxid Med Cell Longev. 2016;2016:1-18. https://doi.org/10.1155/2016/3565127   DOI
12 Briganti S, Picardo M. Antioxidant activity, lipid peroxidation and skin diseases. What's new. J Eur Acad Dermatol Venereol. 2003; 17:663-669. https://doi.org/10.1046/j.1468-3083.2003.00751.x   DOI
13 Quinlan CL, Perevoshchikova IV, Hey-Mogensen M, Orr AL, Brand MD. Sites of reactive oxygen species generation by mitochondria oxidizing different substrates. Redox Biol. 2013;1:304-312. https://doi.org/10.1016/j.redox.2013.04.005   DOI
14 Franceschi C, Garagnani P, Parini P, Giuliani C, Santoro A. Inflammaging: a new immune-metabolic viewpoint for age-related diseases. Nat Rev Endocrinol. 2018;14:576-590. https://doi.org/10.1038/s41574-018-0059-4   DOI
15 Minciullo PL, Catalano A, Mandraffino G, Casciaro M, Crucitti A, Maltese G, et al. Inflammaging and anti-inflammaging: the role of cytokines in extreme longevity. Arch Immunol Ther Exp. 2016;64:111-126. https://doi.org/10.1007/s00005-015-0377-3   DOI
16 Adebo OA, Gabriela Medina-Meza I. Impact of fermentation on the phenolic compounds and antioxidant activity of whole cereal grains: a mini review. Molecules. 2020;25:927. https://doi.org/10.3390/molecules25040927   DOI
17 Lagouge M, Larsson NG. The role of mitochondrial DNA mutations and free radicals in disease and ageing. JIM. 2013;273:529-543. https://doi.org/10.1111/joim.12055   DOI
18 Lee YI, Choi S, Roh WS, Lee JH, Kim TG. Cellular senescence and inflammaging in the skin microenvironment. Int J Mol Sci. 2021;22:3849. https://doi.org/10.3390/ijms22083849   DOI
19 Chovatiya R, Medzhitov R. Stress, inflammation, and defense of homeostasis. Mol cell. 2014;54:281-288. https://doi.org/10.1016/j.molcel.2014.03.030   DOI
20 Blois MS. Antioxidant determinations by the use of a stable free radical. Nature. 1958;181:1199-1200. https://doi.org/10.1038/1811199a0   DOI
21 Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med. 1999;26:1231-1237. https://doi.org/10.1016/S0891-5849(98)00315-3   DOI
22 Chen Z, Bertin R, Froldi G. EC50 estimation of antioxidant activity in DPPH assay using several statistical programs. Food Chem. 2013;138:414-420. https://doi.org/10.1016/j.foodchem.2012.11.001   DOI
23 Rha CS, Jeong HW, Park S, Lee S, Jung YS, Kim DO. Antioxidative, anti-inflammatory, and anticancer effects of purified flavonol glycosides and aglycones in green tea. Antioxidants (Basel). 2019;8:278. https://doi.org/10.3390/antiox8080278   DOI
24 Choi DH, Park EH, Kim MD. Characterization of starch-utilizing yeast Saccharomycopsis fibuligera isolated from Nuruk. Microbiol Biotechnol Lett. 2014;42:407-412. https://doi.org/10.4014/kjmb.1409.09006   DOI
25 Martillanes S, Ayuso-Yuste MC, Bernalte MJ, Gil MV, Delgado-Adamez J. Cellulase-assisted extraction of phenolic compounds from rice bran (Oryza sativa L.): process optimization and characterization. J Food Meas Charact. 2021;15:1719-1726. https://doi.org/10.1007/s11694-020-00773-x   DOI
26 Huang D, Zhou X, Si J, Gong X, Wang S. Studies on cellu- lase-ultrasonic assisted extraction technology for flavonoids from Illicium verum residues. Chem Cent J. 2016;10:1-9. https://doi.org/10.1186/s13065-016-0202-z   DOI
27 Hsieh Y, Chiu MC, Chou JY. Efficacy of the Kombucha beverage derived from green, black, and Pu'er teas on chemical profile and antioxidant activity. J Food Qual. 2021:1-9. https://doi.org/10.1155/2021/1735959   DOI
28 Zhang H, Hassan YI, Liu R, Mats L, Yang C, Liu C, et al. Molecular mechanisms underlying the absorption of aglycone and glycosidic flavonoids in a Caco-2 BBe1 cell model. ACS Omega. 2020;5:10782-10793. https://doi.org/10.1021/acsomega.0c00379   DOI