Browse > Article
http://dx.doi.org/10.15324/kjcls.2022.54.3.179

Detection of the Carbapenem Resistance Gene in Gram-negative Rod Bacteria Isolated from Clinical Specimens  

Yang, Byoung Seon (Department of Medical Laboratory Science, JinJu Health College)
Publication Information
Korean Journal of Clinical Laboratory Science / v.54, no.3, 2022 , pp. 179-191 More about this Journal
Abstract
Carbapenem-resistant Enterobacteriaceae (CRE) poses an increasing public health threat and has limited treatment options with high associated mortality. Genotypes of carbapenemase that threaten public health (blaKPC, blaNDM, blaIMP, and blaVIM) and blaOXA-48-like genes were detected by phenotypic and molecular diagnosis, and related gene distribution patterns were investigated. Phenotypic testing using the modified Hodge test confirmed positivity in all 41 strains examined, and carbapenemase inhibitory testing using meropenem+phenyl boronic acid or meropenem+EDTA confirmed positivity in 18 and 8 strains, respectively. Polymerase chain reaction revealed the presence of amplification products in 28 strains of blaKPC, 25 strains of blaNDM, 5 strains of blaIMP, 1 strain of blaVIM, and 13 blaOXA-48-like strains. In addition, 7 strains of blaKPC+blaNDM, 1 strain of blaKPC+blaIMP, 1 strain of blaNDM+blaOXA-48-like, 1 strain of blaNDM+blaVIM, 4 strains of blaKPC+blaNDM+blaIMP, and 4 strains of blaKPC+blaNDM+blaOXA-48-like were identified. Melting curve analysis using real-time PCR was wholly consistent with PCR results. The study shows genetic identification of highly specific CRE by real-time PCR could be used to provide early diagnoses and infection control, improve surveillance, and prevent the transmission of CRE.
Keywords
$bla_{KPC}$; $bla_{NDM}$; $bla_{IMP}$; $bla_{VIM}; bla_{OXA-48-like}$; Real-time PCR;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Mangold KA, Santiano K, Broekman R, Krafft CA, Voss B, Wang V, et al. Real-time detection of blaKPC in clinical samples and surveillance specimens. J Clin Microbiol. 2011;49:3338-3339. https://doi.org/10.1128/JCM.00268-11   DOI
2 Tawfick MM, Alshareef WA, Bendary HA, Elmahalawy H, Abdulall AK. The emergence of carbapenemase blaNDM genotype among carbapenem-resistant Enterobacteriaceae isolates from Egyptian cancer patients. Eur J Clin Microbiol Infect Dis. 2020;39:1251-1259. https://doi.org/10.1007/s10096-020-03839-2   DOI
3 Feil EJ. Enterobacteriaceae: joining the dots with pan-European epidemiology. Lancet Infect Dis. 2016;17:118-119. https://doi.org/10.1016/S1473-3099(16)30333-4   DOI
4 Weiner LM, Webb AK, Limbago B, Dudeck MA, Patel J, Kallen AJ, et al. Antimicrobial-resistant pathogens associated with healthcare-associated infections: summary of data reported to the national healthcare safety network at the centers for disease control and prevention, 2011-2014. Infect Control Hosp Epidemiol. 2016;37:1288-1301. https://doi.org/10.1017/ice.2016.174   DOI
5 van Duin D, Doi Y. The global epidemiology of carbapenemase-producing Enterobacteriaceae. Virulence. 2016;8:460-469. https://doi.org/10.1080/21505594.2016.1222343   DOI
6 Han R, Shi Q, Wu S, Yin D, Peng M, Dong D, et. al. Dissemination of carbapenemases (KPC, NDM, OXA-48, IMP, and VIM) among carbapenem-resistant Enterobacteriaceae isolated from adult and children patients in China. Front Cell Infect Microbiol. 2020;10:314. https://doi.org/10.3389/fcimb.2020.00314   DOI
7 World Health Organization. New report calls for urgent action to avert antimicrobial resistance crisis. [Internet]. New York: World Health Organization; 2019[cited 2022 March 22]. Available from: https://www.who.int/news/item/29-04-2019-new-report-calls-for-urgent-action-to-avert-antimicrobial-resistance-crisis.
8 Li J, Bi W, Dong G, Zhang Y, Wu Q, Dong T, et al. The new perspective of old antibiotic: in vitro antibacterial activity of TMP-SMZ against Klebsiella pneumoniae. J Microbiol Immunol Infect. 2020;53:757-765. https://doi.org/10.1016/j.jmii.2018.12.013   DOI
9 Wang CH, Ma L, Huang LY, Yeh KM, Lin JC, Siu LK, et al. Molecular epidemiology and resistance patterns of bla OXA-48 Klebsiella pneumoniae and Escherichia coli: a nationwide multicenter study in Taiwan. J Microbiol Immunol Infect. 2021;54: 665-672. https://doi.org/10.1016/j.jmii.2020.04.006   DOI
10 Chen HY, Jean SS, Lee YL, Lu MC, Ko WC, Liu PY, et al. Carbapenem-resistant Enterobacterales in long-term care facilities: a global and narrative review. Front Cell Infect Microbiol. 2021;11:601968. https://doi.org/10.3389/fcimb.2021.601968   DOI
11 Leavitt A, Chmelnitsky I, Carmeli Y, Navon-Venezia S. Complete nucleotide sequence of KPC-3-encoding plasmid pKpQIL in the epidemic Klebsiella pneumoniae sequence type 258. Antimicrob Agents Chemother. 2010;54:4493-4496. https://doi.org/10.1128/AAC.00175-10   DOI
12 Walther-Rasmussen, J, Hoiby N. Class A carbapenemases. J Antimicrob Chemother. 2007;60:470-482. https://doi.org/10.1093/jac/dkm226   DOI
13 Yoon EJ, Jeong SH. Mobile carbapenemase genes in Pseudomonas aeruginosa. Front Microbiol. 2021;12:614058. https://doi.org/10.3389/fmicb.2021.614058   DOI
14 Kosykowska E, Dzieciatkowski T, Mlynarczyk G. Rapid detection of NDM, VIM, KPC and IMP carbapenemases by real-time PCR. J Bacteriol Parasitol. 2016;7:6. https://doi.org/10.4172/2155-9597.1000299   DOI
15 Thyrum PT, Yeh C, Birmingham B, Lasseter K. Pharmacokinetics of meropenem in patients with liver disease. Clin. Infect. Dis. 1997; 24:184-190. https://doi.org/10.1093/clinids/24.supplement_2.s184   DOI
16 Deshpande LM, Jones RN, Fritsche TR, Sader HS. Occurrence and characterization of carbapenemase-producing Enterobacteriaceae: Report from the SENTRY antimicrobial surveillance program (2000-2004). Microb Drug Resist. 2006;12:223-230. https://doi.org/10.1089/mdr.2006.12.223   DOI
17 Poirel L, Revathi G, Bernabeu S, Nordmann P. Detection of NDM-1-Producing Klebsiella pneumoniae in Kenya. Antimicrob Agents Chemother. 2011;55:934-936. https://doi.org/10.1128/AAC.01247-10   DOI
18 Doyle D, Peirano G, Lascols C, Lloyd T, Church DL, Pitout JD. Laboratory detection of Enterobacteriaceae that produce carbapenemases. J Clin Microbiol. 2012;50:3877-3880. https://doi.org/10.1128/JCM.02117-12   DOI
19 Wang L, Gu H, Lu X. A rapid low-cost real-time PCR for the de-tection of Klebsiella pneumonia carbapenemase genes. Ann Clin Microbiol Antimicrob. 2012;11:9. https://doi.org/10.1186/1476-0711-11-9   DOI
20 Bordin A, Trembizki E, Windsor M, Wee R, Tan LY, Buckley C, et al. Evaluation of the SpeeDx Carba (beta) multiplex real-time PCR assay for detection of NDM, KPC, OXA-48-like, IMP-4-like and VIM carbapenemase genes. BMC Infect Dis. 2019;19:571. https://doi.org/10.1186/s12879-019-4176-z   DOI
21 Choi IH, Lee YS. Active surveillance for carbapenem-resistant Enterobacteriaceae at a single center for four years. Ann Lab Med. 2022;42:367-369. https://doi.org/10.3343/alm.2022.42.3.367   DOI
22 Tamma PD, Simner PJ. Phenotypic detection of carbapenemase producing organisms from clinical isolates. J Clin Microbiol. 2018;56:e01140-18. https://doi.org/10.1128/JCM.01140-18   DOI
23 Mutters NT, Tacconelli E. Infection prevention and control in Europe-the picture in the mosaic. Clin Microbiol Infect. 2015;21:1045-1046. https://doi.org/10.1016/j.cmi.2015.06.012   DOI
24 Clinical Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing; twenty-first informational supplement M100-S27. Wayne PA: Clinical Laboratory Standards Institute; 2017.
25 Moquet O, Bouchiat C, Kinana A, Seck A, Arouna O, Bercion R, et al. Class D OXA-48 carbapenemasein multidrug-resistant enterobacteria, Senegal. Emerg Infect Dis. 2011;17:143-144. https://doi.org/10.3201/eid1701.100244   DOI
26 Poirel L, Potron A, Nordmann P. OXA-48-like carbapenemases: the phantom menace. J Antimicrob Chemother. 2012;67:1597-606. https://doi.org/10.1093/jac/dks121   DOI
27 Yang BS, Park JA. Detection of bla KPC and bla NDM genes from gram-negative rod bacteria isolated from a general hospital in Gyeongnam. Korean J Clin Lab Sci. 2021;53:49-59. https://doi.org/10.15324/kjcls.2021.53.1.49   DOI
28 El Solh AA, Alhajhusain A. Update on the treatment of Pseudomonas aeruginosa pneumonia. J Antimicrob Chemother. 2009;64:229-238. https://doi.org/10.1093/jac/dkp201   DOI
29 Sheu CC, Chang YT, Lin SY, Chen YH, Hsueh PR. Infections caused by carbapenem-resistant Enterobacteriaceae: an update on therapeutic options. Front Microbiol. 2019;10:80. https://doi.org/10.3389/fmicb.2019.00080   DOI
30 Lin MY, Lyles-Banks RD, Lolans K, Hines DW, Spear JB, Petrak R, et al. The importance of long-term acute care hospitals in the regional epidemiology of Klebsiella pneumoniae carbapenemase-producing Enterobacteriaceae. Clin Infect Dis. 2013;57: 1246-52. https://doi.org/10.1093/cid/cit500   DOI
31 Lee KW, Kim CK, Yong DE, Jeong SH, Yum JH, Seo YH, et al. Improved performance of the modified Hodge test with MacConkey agar for screening carbapenemase-producing Gram-negative bacilli. J Microbiol Methods. 2010;83:149-152. https://doi.org/10.1016/j.mimet.2010.08.010   DOI
32 The Korean Society of Clinical Microbiology. Diagnostic instruction carbapenemase producing Enterobacteriaceae (CPE) [Internet]. Seoul: The Korean Society of Clinical Microbiology; 2015 [cited 2022 May 19]. Available from: http://kscm.or.kr/xe/kscmnotice/71241.
33 Monteiro J, Widen RH, Pignatari ACC, Kubasek C, Silbert S. Rapid detection of carbapenemase genes by multiplex real-time PCR. J Antimicrob Chemother. 2012;67:906-909. https://doi.org/10.1093/jac/dkr563   DOI
34 Aurilio C, Sansone P, Barbarisi M, Pota V, Giaccari LG, Coppolino F, et al. Mechanisms of action of carbapenem resistance. Antibiotics. 2022;11:421. https://doi.org/10.3390/antibiotics11030421   DOI
35 Goodman KE, Simner PJ, Tamma PD, Milstone AM. Infection control implications of heterogeneous resistance mechanisms in carbapenem resistant Enterobacteriaceae (CRE). Expert Rev Anti Infect Ther. 2016;14:95-108. https://doi.org/10.1007/10.1586/14787210.2016.1106940   DOI
36 Zhang H, Jia P, Zhu Y, Zhang G, Zhang J, Kang W, et al. Susceptibility to imipenem/relebactam of Pseudomonas aeruginosa and Acinetobacter baumannii isolates from Chinese intra-abdominal, respiratory and urinary tract infections: SMART 2015 to 2018. Infect. Drug Resist. 2021;14:3509-3518. https://doi.org/10.2147/IDR.S325520   DOI
37 Jean SS, Harnod D, Hsueh PR. Global threat of carbapenem resistant gram-negative bacteria. Front Cell Infect Microbiol. 2022;12:823684. https://doi.org/10.3389/fcimb.2022.823684   DOI
38 Diene SM, Rolain JM. Carbapenemase genes and genetic platforms in Gram-negative bacilli: Enterobacteriaceae, Pseudomonas and Acinetobacter species. Clin Microbiol Infect. 2014;20:831-838. https://doi.org/10.1111/1469-0691.12655   DOI
39 Potron A, Poirel L, Nordmann P. Emerging broad-spectrum resistance to Pseudomonas aeruginosa and Acinetobacter baumannii: mechanisms and epidemiology. Int J Antimicrob Agents. 2015;45:568-585. https://doi.org/10.1016/j.ijantimicag.2015.03.001   DOI
40 Yigit H, Queenan AM, Anderson GJ, Domenech-Sanchez A, Biddle JW, Steward CD, et al. Novel carbapenem-hydrolyzing β-Lactamase, KPC-1, from a carbapenem-resistant strain of Klebsiella pneumoniae. Antimicrob Agents Chemother. 2001;45: 1151-1161. https://doi.org/10.1128/AAC.45.4.1151-1161.2001   DOI
41 Banerjee R, Humphries R. Clinical and laboratory considerations for the rapid detection of carbapenem-resistant Enterobacteriaceae. Virulence. 2017;8:427-439. https://doi.org/10.1080/21505594.2016.1185577   DOI
42 Qi Y, Wei Z, Ji S, Du X, Shen P, Yu Y. ST11, the dominant clone of KPC-producing Klebsiella pneumoniae in China. J Antimicrob Chemother. 2011;66:307-312. https://doi.org/10.1093/jac/dkq431   DOI
43 Frere JM, Galleni M, Bush K, Dideberg O. Is it necessary to change the classification of beta-lactamases? J Antimicrob Chemother. 2005;55:1051-1053. https://doi.org/10.1093/jac/dki155   DOI
44 Queenan AM, Bush K. Carbapenemases: the versatile be- ta-lactamases. Clin Microbiol Rev. 2007;20:440-458. https://doi.org/10.1128/CMR.00001-07   DOI
45 Goudarzi H, Mirsamadi ES, Ghalavand Z, Vala MH, Mirjalali H, Hashemi A. Rapid detection and molecular survey of blaVIM, blaIMP and blaNDM genes among clinical isolates of Acinetobacter baumannii using new multiplex real-time PCR and melting curve analysis. BMC Microbiol. 2019;19:122. https://doi.org/10.1186/s12866-019-1510-y   DOI
46 Talapan D, Rafila A. Five-year survey of asymptomatic colonization with multidrug-resistant organisms in a Romanian tertiary care hospital. Infect Drug Resist. 2022;15:2959-2967. https://doi.org/10.2147/IDR.S360048   DOI