Browse > Article
http://dx.doi.org/10.15324/kjcls.2020.52.3.194

Mismatch Negativity Using Frequency Difference in Healthy Young Adults: Latency and Amplitude  

Jung, Seokwon (Department of Neurology, Gyeongsang National University Hospital)
Kim, Young-Soo (Department of Neurology, Gyeongsang National University Hospital)
Yang, Tae-Won (Department of Neurology, Gyeongsang National University Changwon Hospital)
Kim, Do-Hyung (Department of Neurology, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine)
Kim, Min Su (Department of Neurology, Gyeongsang National University Hospital)
Bae, Sang Hyeon (Department of Neurology, Gyeongsang National University Hospital)
Kim, Ga-In (Department of Neurology, Gyeongsang National University Hospital)
Kwon, Oh-Young (Department of Neurology, Gyeongsang National University Hospital)
Publication Information
Korean Journal of Clinical Laboratory Science / v.52, no.3, 2020 , pp. 194-201 More about this Journal
Abstract
Latency and amplitude are the measurement parameters of mismatch negativity (MMN). The values of the parameters vary sensitively with the stimulus paradigm. A paradigm using the frequency difference of sounds for the MMN study is well known. This study obtained the reference values of the parameters in healthy young adults by performing the MMN study using the frequency paradigm. The authors recruited ten healthy adults. Their average age was 25.5 years; three were female, and seven were male. On the auditory paradigm for the MMN study, the frequency of sound was 1000 Hz for the standard stimulus, and 1032 Hz for the deviant stimulus. The mean values of latency and amplitude of MMN were 202 ms and 1.88 ㎶ at Fz, 207 ms, and 1.46 ㎶ at Cz, 212 ms, and 1.10 ㎶ at C3, and 214 ms and 1.45 ㎶ at C4. There was no correlation between the latency and amplitude of MMN. This study presented the reference values of the latency and amplitude of the MMN using a standard paradigm that is easy to apply. This information may make the MMN useful for clinical applications and basic research.
Keywords
Acoustic stimulation; Cortical excitability; Electrophysiology;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Naatanen R, Tervaniemi M, Sussman E, Paavilainen P, Winkler I. "Primitive intelligence" in the auditory cortex. Trends Neurosci. 2001;24:283-288. https://doi.org/10.1016/s0166-2236(00)01790-2   DOI
2 Escera C, Leung S, Grimm S. Deviance detection based on regularity encoding along the auditory hierarchy: electrophysiological evidence in humans. Brain Topogr. 2014;27:527-538. https://doi.org/10.1007/s10548-013-0328-4   DOI
3 Naatanen R, Escera C. Mismatch negativity: clinical and other applications. Audiol Neurootol. 2000;5:105-110. https://doi.org/13874   DOI
4 Sams M, Paavilainen P, Alho K, Naatanen R. Auditory frequency discrimination and event-related potentials. Electroencephalogr Clin Neurophysiol. 1985;62:437-448.   DOI
5 Pekkonen E. Mismatch negativity in aging and in Alzheimer's and Parkinson's diseases. Audiol Neurootol. 2000;5:216-224. https://doi.org/10.1159/000013883   DOI
6 Fischer C, Morlet D, Giard M. Mismatch negativity and N100 in comatose patients. Audiol Neurootol. 2000;5:192-197. https://doi.org/10.1159/000013880   DOI
7 Paavilainen P, Tiitinen H, Alho K, Naatanen R. Mismatch negativity to slight pitch changes outside strong attentional focus. Biol Psychol. 1993;37:23-41. https://doi.org/10.1016/0301-0511(93)90025-4   DOI
8 Sanju HK, Mohanan A, Kumar P. Mismatch negativity. Indian Journal of Otology. 2015;21:81-87. https://doi.org/10.4103/0971-7749.155290   DOI
9 Duncan CC, Barry RJ, Connolly JF, Fischer C, Michie PT, Naatanen R, et al. Event-related potentials in clinical research: Guidelines for eliciting, recording, and quantifying mismatch negativity, P300, and N400. Clin Neurophysiol. 2009;120:1883-1908. https://doi.org/10.1016/j.clinph.2009.07.045   DOI
10 Kim DS, Kim YB. A Topographically correlational study of P300 and MMN (mismatch negativity) in healthy subjects. Korean J Clin Lab Sci. 2007;39:256-263.
11 Ford JM, Roth WT, Kopell BS. Auditory evoked potentials to unpredictable shifts in pitch. Psychophysiology. 1976;13:32-39. https://doi.org/10.1111/j.1469-8986.1976.tb03333.x   DOI
12 Karayanidis F, Andrews S, Ward PB, Michie PT. ERP indices of auditory selective attention in aging and Parkinson's disease. Psychophysiology. 1995;32:335-350.   DOI
13 Pekkonen E, Rinne T, Naatanen R. Variability and replicability of the mismatch negativity. Electroencephalogr Clin Neurophysiol. 1995;96:546-554.   DOI
14 Naatanen R. Processing negativity: an evoked-potential reflection of selective attention. Psychol Bull. 1982;92:605-640. https://doi.org/10.1037/0033-2909.92.3.605   DOI
15 Duncan CC, Barry RJ, Connolly JF, Fischer C, Michie PT, Naatanen R, et al. Event-related potentials in clinical research: guidelines for eliciting, recording, and quantifying mismatch negativity, P300, and N400. Clin Neurophysiol. 2009;120:1883-1908. https://doi.org/10.1016/j.clinph.2009.07.045   DOI
16 Deouell LY. The frontal generator of the mismatch negativity revisited. J Psychophysiology. 2007;21:188-203. https://doi.org/10.1027/0269-8803.21.34.188   DOI
17 Koles ZJ. Trends in EEG source localization. Electroencephalogr Clin Neurophysiol. 1998;106:127-137.   DOI
18 Dittmann-Balcar A, Juptner M, Jentzen W, Schall U. Dorsolateral prefrontal cortex activation during automatic auditory duration-mismatch processing in humans: a positron emission tomography study. Neurosci Lett. 2001;308:119-122. https://doi.org/10.1016/s0304-3940(01)01995-4   DOI
19 Doeller CF, Opitz B, Mecklinger A, Krick C, Reith W, Schroger E. Prefrontal cortex involvement in preattentive auditory deviance detection: Neuroimaging and electrophysiological evidence. Neuroimage. 2003;20:1270-1282.   DOI
20 Rinne T, Alho K, Ilmoniemi R, Virtanen J, Naatanen R. Separate time behaviors of the temporal and frontal mismatch negativity sources. Neuroimage. 2000;12:14-19.   DOI
21 Schonwiesner M, Novitski N, Pakarinen S, Carlson S, Tervaniemi M, Naatanen R. Heschl's gyrus, posterior superior temporal gyrus, and mid-ventrolateral prefrontal cortex have different roles in the detection of acoustic changes. J Neurophysiol. 2007;97:2075-2082. https://doi.org/10.1152/jn.01083.2006   DOI
22 R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria; [cited by 2020 Mar 25]. Available from: https://www.R-project.org
23 Sams M, Alho K, et al. The mismatch negativity and information processing. In: Stelmach GE, Vroon PA, editors. Advances in psychology. Amsterdam: Elsevier; 1985. p161-176.
24 Friedrich M, Weber C, Friederici AD. Electrophysiological evidence for delayed mismatch response in infants at-risk for specific language impairment. Psychophysiology. 2004;41:772-782. https://doi.org/10.1111/j.1469-8986.2004.00202.x   DOI
25 Schulte-Korne G, Deimel W, Bartling J, Remschmidt H. Auditory processing and dyslexia: evidence for a specific speech processing deficit. Neuroreport. 1998;9:337-340.   DOI
26 Hay RA, Roach BJ, Srihari VH, Woods SW, Ford JM, Mathalon DH. Equivalent mismatch negativity deficits across deviant types in early illness schizophrenia-spectrum patients. Biol Psychol. 2015;105:130-137. https://doi.org/10.1016/j.biopsycho.2015.01.004   DOI