Browse > Article
http://dx.doi.org/10.15324/kjcls.2020.52.1.18

Clinical Laboratory Aspect of Carbapenem-Resistant Enterobacteriaceae  

Park, Chang-Eun (Department of Biomedical Laboratory Science.Molecular Diagnostics Research Institute, Namseoul University)
Publication Information
Korean Journal of Clinical Laboratory Science / v.52, no.1, 2020 , pp. 18-27 More about this Journal
Abstract
The correct distinction of carbapenem-resistant Enterobacteriaceae (CRE) and ccarbapenemase producing Enterobacteriaceae (CPE) and the rapid detection of CPE are important for instituting the correct treatment and management of clinical infections. Screening protocols are mainly based on cultures of rectal swab specimens on selective media followed by phenotypic tests to confirm a carbapenem-hydrolyzing activity, the rapid carbapenem inactivation method, lateral flow immunoassay, the matrix-assisted laser desorption ionization-time-of-flight test and molecular methods. The CPE is accurate for detection, and is essential for the clinical treatment and prevention of infections. A variety of phenotypic methods and gene-based methods are available for the rapid detection of carbapenemases, and these are expected to be routinely used in clinical microbiology laboratories. Therefore, to control the spread of carbapenemase, many laboratories around the world will need to use reliable, fast, high efficiency, simple and low cost methods. Optimal effects in patient applications would require rapid testing of CRE to provide reproducible support for antimicrobial management interventions or the treatment by various types of clinicians. For the optimal test method, it is necessary to combine complementary test methods to discriminate between various resistant bacterial species and to discover the genetic diversity of various types of carbapenemase for arriving at the best infection control strategy.
Keywords
Carbapenemase-producing Enterobacteriaceae; Carbapenem-resistant Enterobacteriaceae; Infection control; Laboratory detection;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Yang B, Feng Y, McNally A, Zong Z. Occurrence of Enterobacter hormaechei carrying blaNDM-1 and blaKPC-2 in China. Diagn Microbiol Infect Dis. 2018;90:139-142. https://doi.org/10.1016/j.diagmicrobio.2017.10.007   DOI
2 Simner PJ, Gilmour MW, DeGagne P, Nichol K, Karlowsky JA. Evaluation of five chromogenic agar media and the Rosco Rapid Carb Screen kit for detection and confirmation of carbapenemase production in Gram-negative bacilli. J Clin Microbiol. 2015;53:105-112. https://doi.org/10.1128/JCM.02068-14   DOI
3 Malli E, Florou Z, Tsilipounidaki K, Voulgaridi I, Stefos A, Xitsas S, et al. Evaluation of rapid polymyxin NP test to detect colistin-resistant Klebsiella pneumoniae isolated in a tertiary Greek hospital. J Microbiol Methods. 2018;153:35-39. https://doi.org/10.1016/j.mimet.2018.08.010
4 LaBombardi VJ, Urban CM, Kreiswirth BN, Chen L, Osorio G, Kopacz J, et al. Evaluation of Remel Spectra CRE agar for the detection of carbapenem resistant bacteria from rectal swabs obtained from residents of a long-term-care facility. J Clin Microbiol. 2015;53:2823-2826. https://doi.org/10.1128/JCM.00789-15   DOI
5 Girlich D, Laguide M, Dortet L, Naas T. Evaluation of the $Revogene^{(R)}$ Carba C Assay for detection and differentiation of carbapenemase-producing Gram negative bacteria. J Clin Microbiol. 2020;58:JCM.01927-19. https://doi.org/10.1128/JCM.01927-19
6 Byun JH, Seo Y, Kim D, Kim M, Lee H, Yong D, et al. An agar plate-based modified carbapenem inactivation method (p-mCIM) for detection of carbapenemase-producing Enterobacteriaceae. J Microbiol Methods. 2020;168:105781. https://doi.org/10.1016/j.mimet.2019.105781
7 Vasoo S, Lolans K, Li H, Prabaker K, Hayden MK. Comparison of the CHROMagarTM KPC, Remel SpectraTM CRE, and a direct ertapenem disk method for the detection of KPC-producing Enterobacteriaceae from perirectal swabs. Diagn Microbiol Infect Dis. 2014;78:356-359. https://doi.org/10.1016/j.diagmicrobio.2013.08.016   DOI
8 Jing X, Min X, Zhang X, Gong L, Wu T, Sun R, et al. The rapid carbapenemase detection method (rCDM) for rapid and accurate detection of carbapenemase-producing Enterobacteriaceae and Pseudomonas aeruginosa. Front Cell Infect Microbiol. 2019;9:371. https://doi.org/10.3389/fcimb.2019.00371
9 Watahiki M, Kawahara R, Suzuki M, Aoki M, Uchida K, Matsumoto Y, et al. Single-tube multiplex polymerase chain reaction for the detection of genes encoding Enterobacteriaceae carbapenemase. Jpn J Infect Dis. 2019 Nov 29. https://doi.org/10.7883/yoken.JJID.2019.041
10 Hinic V, Amrein I, Stammler S, Heckendorn J, Meinel D, Frei R, et al. Comparison of two rapid biochemical tests and four chromogenic selective media for detection of carbapenemase-producing Gram-negative bacteria. J Microbiol Methods. 2017;135:66-68. https://doi.org/10.1016/j.mimet.2017.01.012
11 Kim JS, Kang GE, Kim HS, Kim HS, Song W, Lee KM. Evaluation of Verigene blood culture test systems for rapid identification of positive blood cultures. Biomed Res Int. 2016;2016:1081536. https://doi.org/10.1155/2016/1081536   DOI
12 Carrer A, Poirel L, Eraksoy H, Cagatay AA, Badur S, Nordmann P. Spread of OXA-48-positive carbapenem-resistant Klebsiella pneumoniae isolates in Istanbul, Turkey. Antimicrob Agents Chemother. 2008;52:2950-2954. https://doi.org/10.1128/AAC.01672-07
13 Mairi A, Pantel A, Sotto A, Lavigne JP, Touati A. OXA-48-like carbapenemases producing Enterobacteriaceae in different niches. Eur J Clin Microbiol Infect Dis. 2017;37:587-604. https://doi.org/10.1007/s10096-017-3112-7   DOI
14 Humphries RM, Yang S, Hemarajata P, Ward KW, Hindler JA, Miller SA, et al. First report of ceftazidime-avibactam resistance in a KPC-3-expressing Klebsiella pneumoniae isolate. Antimicrob Agents Chemother. 2015;59:6605-6607. https://doi.org/10.1128/AAC.01165-15
15 Zhong H, Wu ML, Feng WJ, Huang SF, Yang P. Accuracy and applicability of different phenotypic methods for carbapenemase detection in Enterobacteriaceae: a systematic review and metaanalysis. J Glob Antimicrob Resist. 2019;pii:S2213-7165(19)30264-4. https://doi.org/10.1016/j.jgar.2019.10.010
16 Zarakolu P, Day KM, Sidjabat HE, Kamolvit W, Lanyon CV, Cummings SP, et al. Evaluation of a new chromogenic medium, chromID OXA-48, for recovery of carbapenemase-producing Enterobacteriaceae from patients at a university hospital in Turkey. Eur J Clin Microbiol. 2015;34:519-525. https://doi.org/10.1007/s10096-014-2255-z
17 Mathers AJ, Stoesser N, Sheppard AE, Pankhurst L, Giess A, Yeh AJ, et al. Klebsiella pneumoniae carbapenemase (KPC)-producing K. pneumoniae at a single institution: insights into endemicity from whole-genome sequencing. Antimicrob Agents Chemother. 2015;59:1656-1663. https://doi.org/10.1128/AAC.04292-14
18 Cheng C, Zheng F, Rui Y. Rapid detection of blaNDM, blaKPC, blaIMP, and blaVIM carbapenemase genes in bacteria by loop-mediated isothermal amplification. Microb Drug Resist. 2014;20:533-538. https://doi.org/10.1089/mdr.2014.0040   DOI
19 Frickmann H, Masanta WO, Zautner AE. Emerging rapid resistance testing methods for clinical microbiology laboratories and their potential impact on patient management. Biomed Res Int. 2014;2014:375681. https://doi.org/10.1155/2014/375681   DOI
20 Niu H, Zhang W, Wei L, Liu M, Liu H, Zhao C, et al. Rapid nanopore assay for carbapenem-resistant Klebsiella pneumoniae. Front Microbiol. 2019;10:1672. https://doi.org/10.3389/fmicb.2019.01672
21 Moubareck CA, Hammoudi Halat D, Sartawi M, Lawlor K, Sarkis DK, Alatoom A. Assessment of the performance of CHROMagar KPC and Xpert Carba-R assay for the detection of carbapenem-resistant bacteria in rectal swabs: first comparative study from Abu Dhabi, United Arab Emirates. J Glob Antimicrob Resist. 2019;20:147-152. https://doi.org/10.1016/j.jgar.2019.07.021   DOI
22 Perry JD, Naqvi SH, Mirza IA, Alizai SA, Hussain A, Ghirardi S, et al. Prevalence of faecal carriage of Enterobacteriaceae with NDM-1 carbapenemase at military hospitals in Pakistan, and evaluation of two chromogenic media. J Antimicrob Chemother. 2011;66:2288-2294. https://doi.org/10.1093/jac/dkr299   DOI
23 Pence MA, Hink T, Burnham CA. Comparison of chromogenic media for recovery of carbapenemase-producing Enterobacteriaceae (CPE) and evaluation of CPE prevalence at a tertiary care academic medical center. J Clin Microbiol. 2015;53:663-666. https://doi.org/10.1128/JCM.03208-14   DOI
24 Hirsch EB, Chang KT, Zucchi PC, Francoeur DN, Ledesma KR, Tam VH, et al. An evaluation of multiple phenotypic screening methods for Klebsiella pneumoniae carbapenemase (KPC)-producing Enterobacteriaceae. J Infect Chemother. 2014;20:224-227. https://doi.org/10.1016/j.jiac.2013.10.011   DOI
25 Logan LK, Weinstein RA. The epidemiology of carbapenem-resistant Enterobacteriaceae: the impact and evolution of a global menace. J Infect Dis. 2017;215(Suppl 1):28-36. https://doi.org/10.1093/infdis/jiw282
26 Zasowski EJ, Rybak JM, Rybak MJ. The ${\beta}$-lactams strike back:ceftazidime-avibactam. Pharmacotherapy. 2015;35:755-770. https://doi.org/10.1002/phar.1622   DOI
27 Wang Y, Wang Y, Zhang L, Liu D, Luo L, Li H, et al. Multiplex, rapid, and sensitive isothermal detection of nucleic-acid sequence by endonuclease restriction-mediated real-time multiple cross displacement amplification. Front Microbiol. 2016;7:753. https://doi.org/10.3389/fmicb.2016.00753
28 Swayne R, Ellington MJ, Curran MD, Woodford N, Aliyu SH. Utility of a novel multiplex TaqMan PCR assay for metallo-$\beta$-lactamase genes plus other TaqMan assays in detecting genes encoding serine carbapenemases and clinically significant extended-spectrum $\beta$-lactamases. Int J Antimicrob. Agents. 2013;42:352-356. https://doi.org/10.1016/j.ijantimicag.2013.06.018
29 Girlich D, Oueslati S, Bernabeu S, Langlois I, Begasse C, Arangia N, et al. Evaluation of the BD MAX Check-Points CPO Assay for the detection of carbapenemase producers directly from rectal swabs. J Mol Diagn. 2020;22:294-300. https://doi.org/10.1016/j.jmoldx.2019.10.004   DOI
30 Ledeboer NA, Lopansri BK, Dhiman N, Cavagnolo R, Carroll KC, Granato P, et al. Identification of gram-negative bacteria and genetic resistance determinants from positive blood culture broths by use of the verigene gram-negative blood culture multiplex microarray-based molecular assay. J Clin Microbiol. 2015;53:2460-2472. https://doi.org/10.1128/JCM.00581-15   DOI
31 Hu S, Niu L, Zhao F, Yan L, Nong J, Wang C, et al. Identification of Acinetobacter baumannii and its carbapenem-resistant gene blaOXA-23-like by multiple cross displacement amplification combined with lateral flow biosensor. Sci Rep. 2019;9:17888. https://doi.org/10.1038/s41598-019-54465-8
32 Vourli S, Giakkoupi P, Miriagou V, Tzelepi E, Vatopoulos AC, Tzouvelekis LS. Novel GES/IBC extended-spectrum ${\beta}$-lactamase variants with carbapenemase activity in clinical enterobacteria. FEMS Microbiol Lett. 2004;234:209-213. https://doi.org/10.1111/j.1574-6968.2004.tb09535.x   DOI
33 Kock R, Daniels-Haardt I, Becker K, Mellmann A, Friedrich AW, Mevius D, et al. Carbapenem-resistant Enterobacteriaceae in wildlife, food-producing, and companion animals: a systematic review. Clin Microbiol Infect. 2018;24:1241-1250. https://doi.org/10.1016/j.cmi.2018.04.004   DOI
34 Yu J, Liu J, Li Y, Yu J, Zhu W, Liu Y, et al. Rapid detection of carbapenemase activity of Enterobacteriaceae isolated from positive blood cultures by MALDI-TOF MS. Ann Clin Microbiol Antimicrob. 2018;17:22. https://doi.org/10.1186/s12941-018-0274-9   DOI
35 Vittecoq M, Laurens C, Brazier L, Durand P, Elguero E, Arnal A, et al. VIM-1 carbapenemase-producing Escherichia coli in gulls from southern France. Ecol Evol, 2017;7:1224-1232. https://doi.org/10.1002/ece3.2707   DOI
36 Gautier G, Guillard T, Podac B, Bercot B, Vernet-Garnier V, de Champs C. Detection of different classes of carbapenemases: adaptation and assessment of a phenotypic method applied to Enterobacteriaceae, Pseudomonas aeruginosa and Acinetobacter baumannii, and proposal of a new algorithm. J Microbiol Methods. 2018;147:26-35. https://doi.org/10.1016/j.mimet.2018.02.01
37 Yigit H, Queenan AM, Anderson GJ, Domenech-Sanchez A, Biddle JW, Steward CD, et al. Novel carbapenem-hydrolyzing beta-lactamase, KPC-1, from a carbapenem-resistant strain of Klebsiella pneumoniae. Antimicrob Agents Chemother. 2001;45:1151-1161. https://doi.org/10.1128/aac.45.4.1151-1161.2001
38 Wang J, Yuan M, Chen H, Chen X, Jia Y, Zhu X, et al. First report of Klebsiella oxytoca strain simultaneously producing NDM-1, IMP-4, and KPC-2 carbapenemases. Antimicrob Agents Chemother. 2017;61:E0877-17. https://doi.org/10.1128/AAC.00877-17
39 Jorgensen SCJ, Trinh TD, Zasowski EJ, Lagnf AM, Bhatia S, Melvin SM, et al. Real-world experience with ceftazidime-avibactam for multidrug-resistant gram-negative bacterial infections. Open Forum Infect Dis. 2019;6:ofz522. https://doi.org/10.1093/ofid/ofz522
40 Rapp E, Samuelsen O, Sundqvist M. Detection of carbapenemases with a newly developed commercial assay using matrix assisted laser desorption ionization-time of flight. J Microbiol Methods. 2018;146:37-39. https://doi.org/10.1016/j.mimet.2018.01.008
41 Dortet L, Agathine A, Naas T, Cuzon G, Poirel L, Nordmann P. Evaluation of the $RAPIDEC^{(R)}$ CARBA NP, the Rapid CARB $Screen^{(R)}$ and the Carba NP test for biochemical detection of carbapenemase-producing Enterobacteriaceae. J Antimicrob Chemother. 2015;70:3014-3022. https://doi.org/10.1093/jac/dkv213   DOI
42 Kunze N, Moerer O, Steinmetz N, Schulze MH, Quintel M, Perl T. Point-of-care multiplex PCR promises short turnaround times for microbial testing in hospital-acquired pneumonia-an observational pilot study in critical ill patients. Ann Clin Microbiol Antimicrob. 2015;14:33. https://doi.org/10.1186/s12941-015-0091-3   DOI
43 Genc O, Aksu E. Chromogenic culture media or rapid immunochromatographic test: which is better for detecting Klebsiella pneumoniae that produce OXA-48 and can they be used in blood and urine specimens. J Microbiol Methods. 2018;148:169-173. https://doi.org/10.1016/j.mimet.2018.04.014
44 Rocco VG, Intra J, Sarto C, Tiberti N, Savarino C, Brambilla M, et al. Rapid identification of carbapenemase-producing Klebsiella pneumoniae strains by matrix-assisted laser desorption/ionization-time of flight using $Vitek^{(R)}$ mass spectrometry system. Eurasian J Med. 2019;51:209-213. https://doi.org/10.5152/eurasianjmed.2019.18405   DOI
45 Saad Albichr I, Anantharajah A, Dodemont M, Hallin M, Verroken A, Rodriguez-Villalobos H. Evaluation of the automated BD Phoenix CPO detect test for detection and classification of carbapenemases in Gram negatives. Diagn Microbiol Infect Dis. 2020;96:114911. https://doi.org/10.1016/j.diagmicrobio.2019.114911
46 Kuchibiro T, Komatsu M, Yamasaki K, Nakamura T, Nishio H, Nishi I, et al. Evaluation of the modified carbapenem inactivation method for the detection of carbapenemase-producing Enterobacteriaceae. J Infect Chemother. 2018;24:262-266. https://doi.org/10.1016/j.jiac.2017.11.010   DOI
47 van Almsick V, Ghebremedhin B, Pfennigwerth N, Ahmad-Nejad P. Rapid detection of carbapenemase-producing Acinetobacter baumannii and carbapenem-resistant Enterobacteriaceae using a bioluminescence-based phenotypic method. J Microbiol Methods. 2018;147:20-25. https://doi.org/10.1016/j.mimet.2018.02.004
48 Bogaerts P, Yunus S, Massart M, Huang TD, Glupczynski Y. Evaluation of the BYG carba test, a new electrochemical assay for rapid laboratory detection of carbapenemase-producing Enterobacteriaceae. J Clin Microbiol. 2016;54:349-358. https://doi.org/10.1128/JCM.02404-15   DOI
49 Salimnia H, Fairfax MR, Lephart PR, Schreckenberger P, DesJarlais SM, Johnson JK, et al. Evaluation of the film array(R) blood culture identification panel: results of a multi-center controlled trial. J Clin Microbiol. 2016;54:687-698. https://doi.org/10.1128/JCM.01679-15   DOI
50 Tato M, Ruiz-Garbajosa P, Traczewski M, Dodgson A, McEwan A, Humphries R, et al. Multisite evaluation of Cepheid Xpert Carba-R assay for the detection of carbapenemase-producing organisms in rectal swabs. J Clin Microbiol. 2016;54:1814-1819. https://doi.org/10.1128/JCM.00341-16   DOI
51 Thomson GK, AbdelGhani S, Thomson KS. CPO complete, a novel test for fast, accurate phenotypic detection and classification of carbapenemases. PLoS One. 2019;14:e0220586. https://doi.org/10.1371/journal.pone.0220586   DOI
52 Chen Z, Wang Y, Tian L, Zhu X, Li L, Zhang B, et al. First report in China of Enterobacteriaceae clinical isolates coharboring blaNDM-1 and blaIMP-4 drug resistance genes. Microb Drug Resist. 2015;21:167-170. https://doi.org/10.1089/mdr.2014.0087   DOI
53 Byun JH, Kim YA, Kim M, Kim B, Choi JY, Park YS. Evaluation of Xpert Carba-R Assay v.2 to detect carbapenemase genes in two hospitals in Korea. Ann Lab Med. 2020;40:209-215. https://doi.org/10.3343/alm.2020.40.3.209
54 Del Bianco F, Morotti M, Zannoli S, Dirani G, Fantini M, Pedna MF, et al. Comparison of four commercial screening assays for the detection of blaKPC, blaNDM, blaIMP, blaVIM, and blaOXA48 in rectal secretion collected by swabs. Microorganisms. 2019;7:E704. https://doi.org/10.3390/microorganisms7120704
55 Pinet E, Franceschi C, Collin V, Davin-Regli A, Zambardi G, Pages JM. A simple phenotypic test for detecting the contribution of outer membrane permeability to carbapenem resistance. J Med Microbiol. 2020;69:63-71. https://doi.org/10.1099/jmm.0.001129   DOI
56 Yong D, Toleman MA, Giske CG, Cho HS, Sundman K, Lee K, et al. Characterization of a new metallo-beta-lactamase gene, bla (NDM-1), and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. Antimicrob Agents Chemother. 2009;53:5046-5054. https://doi.org/10.1128/aac.00774-09