Browse > Article
http://dx.doi.org/10.15324/kjcls.2019.51.4.475

Biological Function of Carcinoembryonic Antigen-Related Cell Adhesion Molecule 6 for the Enhancement of Adipose-Derived Stem Cell Survival against Oxidative Stress  

Koh, Eun-Young (Department of Biomedical Laboratory Science, Konyang University)
You, Ji-Eun (Department of Biomedical Laboratory Science, Konyang University)
Jung, Se-Hwa (Department of Biomedical Laboratory Science, Konyang University)
Kim, Pyung-Hwan (Department of Biomedical Laboratory Science, Konyang University)
Publication Information
Korean Journal of Clinical Laboratory Science / v.51, no.4, 2019 , pp. 475-483 More about this Journal
Abstract
The use of stem cells in cell-based therapy has attracted extensive interest in the field of regenerative medicine, and it has been applied to numerous incurable diseases due to the inherent abilities of self-renewal and differentiation. However, there still exist some severe obstacles, such as requirement of cell expansion before the treatment, and low survival at the treated site. To overcome these disadvantages of stem cells, we used the carcinoembryonic antigen-related cell adhesion molecule 6 (CEACAM 6) gene, which functions to increase cell-cell interaction as well as anti-apoptosis. We first confirmed whether CEACAM 6 is expressed in various cell lines at the protein level (including in stem cells), followed by evaluating and selecting the optimal transfection conditions into stem cells. The CEACAM 6 gene was transfected into stem cells to prolong cell survival and preserve from damage by oxidative stress. After confirming the CEACAM 6 expression in transfected stem cells, the cell survival was assessed under oxidative condition by exposing to hydrogen peroxide (H2O2) to mimic the chronic environment-induced cellular damage. CEACAM 6 expressing stem cells show increased cell viability compared to the non-CEACAM 6 expressing cells. We propose that the application of the CEACAM 6 gene is a potential option, capable of expanding and enhancing the therapeutic effects of stem cells.
Keywords
CEACAM 6; Cell survival; Oxidative stress; Stem cell;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Panczyszyn A, Wieczorek M. Role of CEACAM in neutrophil activation. Advances in hygiene and Experimental Medicine (Online). 2012;66:574-582. https://doi.org/10.5604/17322693.1008194.
2 Gemei M, Mirabelli P, Di Noto R, Corbo C, Iaccarino A, Zamboli A, et al. CD66c is a novel marker for colorectal cancer stem cell isolation, and its silencing halts tumor growth in vivo. Cancer. 2013;119:729-738. https://doi.org/10.1002/cncr.27794.   DOI
3 Minciacchi VR, Freeman MR, Di Vizio D. Extracellular vesicles in cancer: exosomes, microvesicles and the emerging role of large oncosomes. Semin Cell Dev Biol. 2015;40:41-51. https://doi.org/10.1016/j.semcdb.2015.02.010.   DOI
4 Ganapathi M, Boles NC, Charniga C, Lotz S, Campbell M, Temple S, et al. Effect of bmi1 over-expression on gene expression in adult and embryonic murine neural stem cells. Scientific Reports. 2018;8:7464. https://doi.org/10.1038/s41598-018-25921-8.   DOI
5 Bahmani B, Roudkenar MH, Halabian R, Jahanian-Najafabadi A, Amiri F, Jalili MA. Lipocalin 2 decreases senescence of bone marrow-derived mesenchymal stem cells under sub-lethal doses of oxidative stress. Cell Stress and Chaperones. 2014;19:685-693. https://doi.org/10.1007/s12192-014-0496-5.   DOI
6 Ogle B. Electroporation can efficiently transfect hESC-derived mesenchymal stem cells without inducing differentiation. The Open Stem Cell Journal. 2011;3:62-66. https://doi.org/10.2174/1876893801103010062.   DOI
7 Rizk A, Rabie BM. Electroporation for transfection and differentiation of dental pulp stem cells. Biores Open Access. 2013;2:155-162. https://doi.org/10.1089/biores.2012.0273.   DOI
8 Park E, Cho HB, Takimoto K. Effective gene delivery into adipose-derived stem cells: transfection of cells in suspension with the use of a nuclear localization signal peptide-conjugated polyethylenimine. Cytotherapy. 2015;17:536-542. https://doi.org/10.1016/j.jcyt.2014.11.008.   DOI
9 Cho HM, Kim PH, Chang HK, Shen YM, Bonsra K, Kang BJ, et al. Targeted genome engineering to control VEGF expression in human umbilical cord blood-derived mesenchymal stem cells: potential implications for the treatment of myocardial infarction. Stem Cells Transl Med. 2017;6:1040-1051. https://doi.org/10.1002/sctm.16-0114.   DOI
10 Xu L, Wang J, Liu Y, Xie L, Su B, Mou D, et al. CRISPR-edited stem cells in a patient with HIV and acute lymphocytic leukemia. N Engl J Med. 2019;381:1240-1247. https://doi.org/10.1056/NEJMoa1817426.   DOI
11 Olusanya TOB, Haj Ahmad RR, Ibegbu DM, Smith JR, Elkordy AA. Liposomal drug delivery systems and anticancer drugs. Molecules. 2018;23:907. https://doi.org/10.3390/molecules23040907.   DOI
12 Tao J, Ding WF, Che XH, Chen YC, Chen F, Chen XD, et al. Optimization of a cationic liposome-based gene delivery system for the application of miR-145 in anticancer therapeutics. Int J Mol Med. 2016;37:1345-1354. https://doi.org/10.3892/ijmm.2016.2530.   DOI
13 Zhang Y, Li H, Sun J, Gao J, Liu W, Li B, et al. DC-Chol/DOPE cationic liposomes: a comparative study of the influence factors on plasmid pDNA and siRNA gene delivery. Int J Pharm. 2010;390:198-207. https://doi.org/10.1016/j.ijpharm.2010.01.035.   DOI
14 Ramamoorth M, Narvekar A. Non viral vectors in gene therapyan overview. J Clin Diagn Res. 2015;9:GE01-6. https://doi.org/10.7860/JCDR/2015/10443.5394.
15 Uno N, Abe S, Oshimura M, Kazuki Y. Combinations of chromosome transfer and genome editing for the development of cell/animal models of human disease and humanized animal models. Journal of Human Genetics. J Hum Genet. 2018;63:145-156. https://doi.org/10.1038/s10038-017-0378-7.   DOI
16 Bailey SR, Maus MV. Gene editing for immune cell therapies. Nat Biotechnol. 2019. https://doi.org/10.1038/s41587-019-0137-8.
17 Kim PH, Cho JY. Myocardial tissue engineering using electrospun nanofiber composites. BMB Rep. 2016;49:26-36. https://doi.org/10.5483/BMBRep.2016.49.1.165. PubMed PMID: 26497579.   DOI
18 Clement F, Grockowiak E, Zylbersztejn F, Fossard G, Gobert S, Maguer-Satta V. Stem cell manipulation, gene therapy and the risk of cancer stem cell emergence. Stem Cell Investig. 2017;4:67. https://doi.org/10.21037/sci.2017.07.03.   DOI
19 Honmou O, Onodera R, Sasaki M, Waxman SG, Kocsis JD. Mesenchymal stem cells: therapeutic outlook for stroke. Trends Mol Med. 2012;18:292-297. https://doi.org/10.1016/j.molmed.2012.02.003.   DOI
20 Henning RJ. Stem cells in cardiac repair. Future Cardiology. 2011;7:99-117. https://doi.org/10.2217/fca.10.109.   DOI
21 Mead B, Tomarev S. Evaluating retinal ganglion cell loss and dysfunction. Exp Eye Res. 2016;151:96-106. https://doi.org/10.1016/j.exer.2016.08.006.   DOI
22 Kim PH, Na SS, Lee B, Kim JH, Cho JY. Stanniocalcin 2 enhances mesenchymal stem cell survival by suppressing oxidative stress. BMB Rep. 2015;48:702-707. https://doi.org/10.5483/bmbrep.2015.48.12.158.   DOI
23 Baek K, Tu C, Zoldan J, Suggs LJ. Gene transfection for stem cell therapy. Current Stem Cell Reports. 2016;2:52-61. https://doi.org/10.1007/s40778-016-0029-5.   DOI
24 Johnson B, Mahadevan D. Emerging role and targeting of carcinoembryonic antigen-related cell adhesion molecule 6 (CEACAM6) in human malignancies. Clin Cancer Drugs. 2015;2:100-111. https://doi.org/10.2174/2212697X02666150602215823.   DOI
25 Kratochvil MJ, Seymour AJ, Li TL, Pasca SP, Kuo CJ, Heilshorn SC. Engineered materials for organoid systems. Nature Reviews Materials. 2019;4:606-622. https://doi.org/10.1038/s41578-019-0129-9.   DOI
26 Kim CY, Hwang IK, Kang C, Chung EB, Jung CR, Oh H, et al. Improved transfection efficiency and metabolic activity in human embryonic stem cell using non-enzymatic method. Int J Stem Cells. 2018;11:149-156. https://doi.org/10.15283/ijsc18037.   DOI
27 Raik S, Kumar A, Bhattacharyya S. Insights into cell-free therapeutic approach: role of stem cell "soup-ernatant". Biotechnol Appl Biochem. 2018;65:104-118.https://doi.org/10.1002/bab.1561.   DOI
28 Lee S, Choi E, Cha MJ, Hwang KC. Cell adhesion and long-term survival of transplanted mesenchymal stem cells: a prerequisite for cell therapy. Oxid Med Cell Longev. 2015;2015:632902. https://doi.org/10.1155/2015/632902.   DOI
29 Sachs N, de Ligt J, Kopper O, Gogola E, Bounova G, Weeber F, et al. A living biobank of breast cancer organoids captures disease heterogeneity. Cell. 2018;172:373-386. https://doi.org/10.1016/j.cell.2017.11.010.   DOI
30 Li Z, Hu X, Zhong JF. Mesenchymal stem cells: characteristics, function, and application. Stem Cells Int. 2019;2019:8106818. https://doi.org/10.1155/2019/8106818.   DOI
31 Monsel A, Zhu Y-G, Gennai S, Hao Q, Liu J, Lee JW. Cell-based therapy for acute organ injury. Anesthesiology. 2014;121:1099-1121. https://doi.org/10.1097/aln.0000000000000446.   DOI
32 Swioklo S, Constantinescu A, Connon CJ. Alginate-encapsulation for the improved hypothermic preservation of human adipose-derived stem cells. Stem Cells Transl Med. 2016;5:339-349. https://doi.org/10.5966/sctm.2015-0131.   DOI
33 Beauchemin N, Arabzadeh A. Carcinoembryonic antigen-related cell adhesion molecules (CEACAMs) in cancer progression and metastasis. Cancer Metastasis Rev. 2013;32:643-671.https://doi.org/10.1007/s10555-013-9444-6.   DOI
34 Lin SE, Barrette AM, Chapin C, Gonzales LW, Gonzalez RF, Dobbs LG, et al. Expression of human carcinoembryonic antigen-related cell adhesion molecule 6 and alveolar progenitor cells in normal and injured lungs of transgenic mice. Physiol Rep. 2015;3. pii: e12657. https://doi.org/10.14814/phy2.12657.
35 Blumenthal RD, Hansen HJ, Goldenberg DM. Inhibition of adhesion, invasion, and metastasis by antibodies targeting CEACAM6 (NCA-90) and CEACAM5 (Carcinoembryonic Antigen). Cancer Res. 2005;65:8809-8817. https://doi.org/10.1158/0008-5472.CAN-05-0420.   DOI
36 Rizeq B, Zakaria Z, Ouhtit A. Towards understanding the mechanisms of actions of carcinoembryonic antigen-related cell adhesion molecule 6 in cancer progression. Cancer Sci. 2018;109:33-42. https://doi.org/10.1111/cas.13437.   DOI