Browse > Article
http://dx.doi.org/10.15324/kjcls.2019.51.3.360

Effect of Prostaglandin F2 Alpha on E-cadherin, N-cadherin and Cell Adhesion in Ovarian Luteal Theca Cells  

Lee, Sang-Hee (Discipline of ICT, School of Technology, Environments and Design, University of Tasmania)
Jung, Bae Dong (College of Veterinary Medicine, Kangwon National University)
Lee, Seunghyung (College of Animal Life Sciences, Kangwon National University)
Publication Information
Korean Journal of Clinical Laboratory Science / v.51, no.3, 2019 , pp. 360-369 More about this Journal
Abstract
Cadherins are essential transmembrane proteins that promote cell-cell adhesion and maintain the corpus luteum structure in the ovary. This study examined the influence of prostaglandin F2 alpha ($PGF2{\alpha}$) on E-cadherin, N-cadherin, and adhesion in luteal theca cells (LTCs). The luteal cells were isolated from the mid-phase corpus luteum, and the LTCs were cultured separately from the luteal heterogeneous cells according to the morphology of the mesenchymal cells and to determine if steroidogenic and endothelial cells of LTCs, 3beta-hydroxysteroid dehydrogenase ($3{\beta}$-HSD), and vascular endothelial growth factor receptor 2 (VEGFR2) mRNA were used. The LTCs were then incubated in the culture medium supplemented with 0.01, 0.1, and 1.0 mM $PGF2{\alpha}$ for 24 h, and the E-cadherin and N-cadherin proteins in the LTCs were detected by confocal laser scanning microscopy. The results revealed $3{\beta}$-HSD mRNA expression in the LTC but no VEGF2R mRNA expression. The E-cadherin and N-cadherin proteins of the LTCs were damaged in the 0.01, 0.1, and 1.0 mM $PGF2{\alpha}$ treatment groups, and the expression of the N-cadherin protein was reduced significantly in 0.01 mM $PGF2{\alpha}$ compared to the 0 mM $PGF2{\alpha}$ treatment groups (P<0.05). In addition, the number of attached LTCs were significantly lower in the 0.01 mM $PGF2{\alpha}$ treatment group than in the 0 mM $PGF2{\alpha}$ treatment group (P<0.05). In conclusion, $PGF2{\alpha}$ affected the disruption of cadherin proteins and cell adhesion in LTCs. These results may help better understand the cadherin and adhesion mechanism during corpus luteum regression in the ovary.
Keywords
Adhesion; Corpus luteum; E-cadherin; N-cadherin; Prostaglandin F2 alpha;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Brannian JD, Stouffer RL, Shiigi SM, Hoyer PB. Isolation of ovine luteal cell subpopulations by flow cytometry. Biol Reprod. 1993;48:495-502. https://doi.org/10.1095/biolreprod48.3.495.   DOI
2 Spitschak M, Vanselow J. Bovine large luteal cells show increasing de novo DNA methylation of the main ovarian CYP19A1 promoter P2. Gen Comp Endocrinol. 2012;178:37-45. https://doi.org/10.1016/j.ygcen.2012.04.001.   DOI
3 Tajima K, Orisaka M, Mori T, Kotsuji F. Ovarian theca cells in follicular function. Reprod Biomed Online. 2007;15:591-609. https://doi.org/10.1016/s1472-6483(10)60392-6.   DOI
4 Herrmann H, Bar H, Kreplak L, Strelkov SV, Aebi U. Intermediate filaments: from cell architecture to nanomechanics. Nat Rev Mol Cell Biol. 2007;8:562. https://doi.org/10.1038/nrm2197.
5 Maroni D, Davis JS. TGFB1 disrupts the angiogenic potential of microvascular endothelial cells of the corpus luteum. J Cell Sci. 2011;124:2501-2510. https://doi.org/10.1242/jcs.084558.   DOI
6 Sheetz MP. Cell control by membrane-cytoskeleton adhesion. Nat Rev Mol Cell Biol. 2001;2:392-396. https://doi.org/10.1093/biolreprod/83.s1.228.   DOI
7 Shirasuna K, Watanabe S, Nagai K, Sasahara K, Shimizu T, Ricken AM, et al. Expression of mRNA for cell adhesion molecules in the bovine corpus luteum during the estrous cycle and PGF2alpha-induced luteolysis. J Reprod Dev. 2007;53:1319-1328. https://doi.org/10.1262/jrd.19082.   DOI
8 Abera A, Sales K, Catalano R, Katz A, Jabbour H. EP2 receptor mediated cAMP release is augmented by $PGF2{\alpha}$ activation of the FP receptor via the calcium-calmodulin pathway. Cell Signal. 2010;22:71-79. https://doi.org/10.1016/j.cellsig.2009.09.012.   DOI
9 McCracken JA, Custer EE, Lamsa JC. Luteolysis: a neuroendocrine-mediated event. Physiol Rev. 1999;79:263-323. https://doi.org/10.1152/physrev.1999.79.2.263.   DOI
10 Yamagishi-Kimura R, Honjo M, Aihara M. Contribution of prostanoid FP receptor and prostaglandins in transient inflammatory ocular hypertension. Sci Rep. 2018;8:11098. https://doi.org/10.1038/s41598-018-29273-1.   DOI
11 Desouza M, Gunning PW, Stehn JR. The actin cytoskeleton as a sensor and mediator of apoptosis. Bioarchitecture. 2012;2:75-87. https://doi.org/10.4161/bioa.20975.   DOI
12 Yadav VK, Sudhagar RR, Medhamurthy R. Apoptosis during spontaneous and prostaglandin $F2{\alpha}$-induced luteal regression in the Buffalo Cow (Bubalus bubalis): involvementof mitogenactivated protein kinases. Biol Reprod. 2002;67:752-759. https://doi.org/10.1095/biolreprod.102.004077.   DOI
13 Yadav VK, Lakshmi G, Medhamurthy R. Prostaglandin $F2{\alpha}$-mediated activation of apoptotic signaling cascades in the corpus luteum during apoptosis. J Biol Chem. 2005;280:10357-10367. https://doi.org/10.1074/jbc.m409596200.   DOI
14 Okuda K, Sakumoto R. Multiple roles of TNF super family members in corpus luteum function. Reprod Biol Endocrinol. 2003;1:95. https://doi.org/10.1186/1477-7827-1-95.   DOI
15 Korzekwa A, Jaroszewski JJ, Bogacki M, Deptula KM, Maslanka TS, Acosta TJ, et al. Effects of prostaglandin $F2{\alpha}$ and nitric oxide on the secretory function of bovine luteal cells. J Reprod Dev. 2004;50:411-417. https://doi.org/10.1262/jrd.50.411.   DOI
16 Korzekwa A, Jaroszewski J, Woclawek-Potocka I, Bah M, Skarzynski D. Luteolytic effect of prostaglandin $F2{\alpha}$ on bovine corpus luteum depends on cell composition and contact. Reprod Domest Anim. 2008;43:464-472. https://doi.org/10.1111/j.1439-0531.2007.00936.x.   DOI
17 Kim M, Lee SH, Lee S, Kim GY. Expression of fas and TNFR1 in the luteal cell types isolated from the ovarian corpus luteum. Biomed Sci Lett. 2019;25:107-112. https://doi.org/10.15616/BSL.2019.25.1.107.   DOI
18 Korzekwa A, Lukasik K, Pilawski W, Piotrowska-Tomala K, Jaroszewski J, Yoshioka S, et al. Influence of prostaglandin $F2{\alpha}$ analogues on the secretory function of bovine luteal cells and ovarian arterial contractility in vitro. Vet J. 2014;199:131-137. https://doi.org/10.1016/j.tvjl.2013.09.021.   DOI
19 Yuan W, Giudice LC. Programmed cell death in human ovary is a function of follicle and corpus luteum status. J Clin Endocrinol Metab. 1997;82:3148-3155. https://doi.org/10.1210/jc.82.9.3148.   DOI
20 Skarzynski DJ, Jaroszewski JJ, Okuda K. Role of tumor necrosis $factor-{\alpha}$ and nitric oxide in luteolysis in cattle. Domest Anim Endocrinol. 2005;29:340-346. https://doi.org/10.1016/j.domaniend.2005.02.005.   DOI
21 Khan-Dawood FS, Yang J, Ozigi AA, Yusoff Dawood M. Immunocytochemical localization and expression of E-cadherin, ${\beta}$-catenin, and plakoglobin in the baboon (Papio anubis) corpus luteum. Biol Reprod. 1996;55:246-253. https://doi.org/10.1095/biolreprod55.2.246.   DOI
22 Machell N, Farookhi R. E-and N-cadherin expression and distribution during luteinization in the rat ovary. Reproduction. 2003;125:791-800. https://doi.org/10.1530/rep.0.1250791.   DOI
23 Baum B, Georgiou M. Dynamics of adherens junctions in epithelial establishment, maintenance, and remodeling. J Cell Biol. 2011;192:907-917. https://doi.org/10.1083/jcb.201009141.   DOI
24 O'shea J, Rodgers R, D'occhio M. Cellular composition of the cyclic corpus luteum of the cow. Reproduction. 1989;85:483-487. https://doi.org/10.1530/jrf.0.0850483.   DOI
25 Grzesiak M, Mitan A, Janik ME, Knapczyk-Stwora K, Slomczynska M. Flutamide alters ${\beta}$-catenin expression and distribution, and its interactions with E-cadherin in the porcine corpus luteum of mid- and late pregnancy. Histol Histopathol. 2015; 30:1341-1352. https://doi.org/10.1016/j.repbio.2012.11.053.
26 Mui KL, Chen CS, Assoian RK. The mechanical regulation of integrin-cadherin crosstalk organizes cells, signaling and forces. J Cell Sci. 2016;129:1093-1100. https://doi.org/10.1242/jcs.183699.   DOI
27 Berisha B, Schams D, Rodler D, Sinowatz F, Pfaffl MW. Changes in the expression of prostaglandin family members in bovine corpus luteum during the estrous cycle and pregnancy. Mol Reprod Dev. 2018;7:622-634. https://doi.org/10.1002/mrd.22999.
28 Po JW, Roohullah A, Lynch D, DeFazio A, Harrison M, Harnett PR, et al. Improved ovarian cancer EMT-CTC isolation by immunomagnetic targeting of epithelial EpCAM and mesenchymal N-cadherin. J Circ Biomarkers. 2018;7:1-10. https://doi.org/10.1177/1849454418782617.
29 Yi Y, Cheng JC, Klausen C, Leung PCK. Activin A promotes ovarian cancer cell migration by suppressing E-cadherin expression. Exp Cell Res. In pressed. https://doi.org/10.1016/j.yexcr.2019.06.016.
30 Skarzynski D, Piotrowska-Tomala K, Lukasik K, Galvao A, Farberov S, Zalman Y, et al. Growth and regression in bovine corpora lutea: regulation by local survival and death pathways. Reprod Domest Anim. 2013;48:25-37. https://doi.org/10.1111/rda.12203.   DOI
31 Berisha B, Bridger P, Toth A, Kliem H, Meyer H, Schams D, et al. Expression and localization of gap junctional connexins 26 and 43 in bovine periovulatory follicles and in corpus luteum during different functional stages of oestrous cycle and pregnancy. Reprod Domest Anim. 2009;44:295-302. https://doi.org/10.1111/j.1439-0531.2008.01068.x.   DOI
32 Groten T, Fraser H, Duncan W, Konrad R, Kreienberg R, Wulff C. Cell junctional proteins in the human corpus luteum: changes during the normal cycle and after HCG treatment. Hum Reprod. 2006;21:3096-3102. https://doi.org/10.1093/humrep/del286.   DOI
33 Spanel-Borowski K. Diversity of ultrastructure in different phenotypes of cultured microvessel endothelial cells isolated from bovine corpus luteum. Cell Tissue Res. 1991;266:37-49. https://doi.org/10.1007/bf00678709.   DOI
34 Alila H, Dowd J, Corradino R, Harris W, Hansel W. Control of progesterone production in small and large bovine luteal cells separated by flow cytometry. Reproduction. 1988b;82:645-655. https://doi.org/10.1530/jrf.0.0820645.   DOI
35 Sundfeldt K, Piontkewitz Y, Billig H, Hedin L. E-cadherin-catenin complex in the rat ovary: cell-specific expression during folliculogenesis and luteal formation. J Reprod Fertil. 2000;118:375-386. https://doi.org/10.1530/jrf.0.1180375.   DOI
36 Stocco C, Telleria C, Gibori G. The molecular control of corpus luteum formation, function, and regression. Endocr Rev. 2007;28:117-149. https://doi.org/10.1007/978-0-387-88186-7_26.   DOI
37 Alila H, Corradino R, Hansel, W. A comparison of the effects of cyclooxygenase prostanoids on progresterone production by small and large bovine luteal cells. Prostaglandins. 1988a; 36:259-270. https://doi.org/10.1016/0090-6980(88)90312-7.   DOI