Browse > Article
http://dx.doi.org/10.15324/kjcls.2019.51.1.42

Serum Uric Acid to Creatinine Ratio as a Predictor of Metabolic Syndrome in Healthy Adults Men  

Kim, Myong Soo (Department of Laboratory Medicine, Samsung Medical Center)
Shin, Kyung A (Department of Clinical Laboratory Science, Shinsung University)
Publication Information
Korean Journal of Clinical Laboratory Science / v.51, no.1, 2019 , pp. 42-49 More about this Journal
Abstract
This study compared the utility of the serum uric acid/creatinine ratio with that of uric acid as a risk predictor of metabolic syndrome. From November 2016 to October 2018, 14,190 adult men under the age of 20 years, who underwent a comprehensive health checkup at a general hospital in their metropolitan area, were included. Metabolic syndrome was assessed according to the American Heart Association/National Heart Lung and Blood Institute (AHA/NHLBI) criteria. Abdominal obesity was based on the WHO criteria in the Western Pacific region. The serum uric acid/creatinine ratio was found to be higher in the fourth quartile than in the first quartile, with a high incidence of metabolic syndrome and metabolic syndrome components. On the other hand, ROC analysis revealed the serum uric acid/creatinine ratio to be a similar indicator of the metabolic syndrome risk to serum uric acid (AUC, 0.554 vs 0.566). The serum uric acid/creatinine ratio showed lower sensitivity and higher specificity than uric acid. In conclusion, the utility of the serum uric acid/creatinine ratio as an independent indicator to predict the risk of metabolic syndrome is limited, and should be used only as an auxiliary marker.
Keywords
Creatinine; Metabolic syndrome; Risk factor; Serum uric acid;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Shin KA. Relationship between metabolic syndrome and pulmonary function in nonsmoker male. The Journal of the Korea Contents Association. 2014;14: 313-321. http://doi.org/10.5392/JKCA.2014.14.12.313.
2 Shin KA. The relationship between metabolic syndrome risk factors and high sensitive C-reactive protein in abdominal obesity elderly women. Korean J Clin Lab Sci. 2017;49:121-127. https://doi.org/10.15324/kjcls.2017.49.2.121.   DOI
3 Thomas G, Sehgal AR, Kashyap SR, Srinivas TR, Kirwan JP, Navaneethan SD. Metabolic syndrome and kidney disease: a systematic review and meta-analysis. Clin J Am Soc Nephrol. 2011;6:2364-2373. https://doi.org/10.2215/CJN.02180311.   DOI
4 Al-Daghri NM, Al-Attas OS, Wani K, Sabico S, Alokail MS. Serum uric acid to creatinine ratio and risk of metabolic syndrome in Saudi type 2 diabetic patients. Sci Rep. 2017;7:12104. https://doi.org/10.1038/s41598-017-12085-0.   DOI
5 Dalton RN. Serum creatinine and glomerular filtration rate: perception and reality. Clin Chem. 2010;56:687-689. https://doi.org/10.1373/clinchem.2010.144261.   DOI
6 Muntner P, He J, Hamm L, Loria C, Whelton PK. Renal insufficiency and subsequent death resulting from cardiovascular disease in the United States. J Am Soc Nephrol. 2002;13:745-753.   DOI
7 Johnson RJ, Kang DH, Feig D, Kivlighn S, Kanellis J, Watanabe S, et al. Is there a pathogenetic role for uric acid in hypertension and cardiovascular and renal disease? Hypertension. 2003;41:1183-1190. https://doi.org/10.1161/01.HYP.0000069700.62727.C5.   DOI
8 Quinones Galvan A, Natali A, Baldi S, Frascerra S, Sanna G, Ciociaro D, et al. Effect of insulin on uric acid excretion in humans. Am J Physiol. 1995;268(1 Pt 1):E1-5. https://doi.org/10.1152/ajpendo.1995.268.1.E1.
9 Gu L, Huang L, Wu H, Lou Q, Bian R. Serum uric acid to creatinine ratio: A predictor of incident chronic kidney disease in type 2 diabetes mellitus patients with preserved kidney function. Diab Vasc Dis Res. 2017;14:221-225. https://doi.org/10.1177/1479164116680318.   DOI
10 Chang IH, Han JH, Myung SC, Kwak KW, Kim TH, Park SW, et al. Association between metabolic syndrome and chronic kidney disease in the Korean population. Nephrology (Carlton). 2009;14:321-326. https://doi.org/10.1111/j.1440-1797.2009.01091.x.   DOI
11 Johnson RJ, Feig DI, Herrera-Acosta J, Kang DH. Resurrection of uric acid as a causal risk factor in essential hypertension. Hypertension. 2005;45:18-20. https://doi.org/10.1161/01.HYP.0000150785.39055.e8.   DOI
12 Nakagawa T, Hu H, Zharikov S, Tuttle KR, Short RA, Glushakova O, et al. A causal role for uric acid in fructose-induced metabolic syndrome. Am J Physiol Renal Physiol. 2006;290:F625-F631. https://doi.org/10.1152/ajprenal.00140.2005.   DOI
13 Rathmann W, Funkhouser E, Dyer AR, Roseman JM. Relations of hyperuricemia with the various components of the insulin resistance syndrome in young black and white adults: the CARDIA study. Coronary Artery Risk Development in Young Adults. Ann Epidemiol. 1998;8:250-261.   DOI
14 Shin SR, Han AL. Relationship between metabolic syndrome and uric acid to creatinine ratio in Korean adults: Korea National Health and Nutrition Examination Survey 2016. Korean J Health Promot. 2018;18:113-118. https://doi.org/10.15384/kjhp.2018.18.3.113.   DOI
15 Grundy SM, Cleeman JI, Daniels SR, Donato KA, Eckel RH, Franklin BA, et al. Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Circulation. 2005;112:2735-2752. https://doi.org/10.1161/CIRCULATIONAHA.105.169404.   DOI
16 World Health Organization regional office for the Western Pacific, International Diabetes Institute, International Association for the Study of Obesity, International Obesity Task Force. The Asia-Pacific perspective: redefining obesity and its treatment [Internet]. Sydney: Health Communications Australia; 2000 [cited 2019 February 16]. Available from: http://www.wpro.who.int/nutrition/documents/docs/Redefiningobesity.pdf.
17 Zoppini G, Targher G, Chonchol M, Ortalda V, Abaterusso C, Pichiri I, et al. Serum uric acid levels and incident chronic kidney disease in patients with type 2 diabetes and preserved kidney function. Diabetes Care. 2012;35:99-104. https://doi.org/10.2337/dc11-1346.   DOI
18 Conen D, Wietlisbach V, Bovet P, Shamlaye C, Riesen W, Paccaud F, et al. Prevalence of hyperuricemia and relation of serum uric acid with cardiovascular risk factors in a developing country. BMC Public Health. 2004;4:9. https://doi.org/10.1186/1471-2458-4-9.   DOI
19 Kodama S, Saito K, Yachi Y, Asumi M, Sugawara A, Totsuka K, et al. Association between serum uric acid and development of type 2 diabetes. Diabetes Care. 2009;32:1737-1742. https://doi.org/10.2337/dc09-0288.   DOI
20 Zhang L, Wang F, Wang X, Liu L, Wang H. The association between plasma uric acid and renal function decline in a Chinese population-based cohort. Nephrol Dial Transplant. 2012;27:1836-1839. https://doi.org/10.1093/ndt/gfr597.   DOI
21 Goicoechea M, de Vinuesa SG, Verdalles U, Ruiz-Caro C, Ampuero J, Rincon A, et al. Effect of allopurinol in chronic kidney disease progression and cardiovascular risk. Clin J Am Soc Nephrol. 2010;5:1388-1393. https://doi.org/10.2215/CJN.01580210.   DOI
22 Madero M, Sarnak MJ, Wang X, Greene T, Beck GJ, Kusek JW, et al. Uric acid and long-term outcomes in CKD. Am J Kidney Dis. 2009;53:796-803. https://doi.org/10.1053/j.ajkd.2008.12.021.   DOI
23 Sturm G, Kollerits B, Neyer U, Ritz E, Kronenberg F; MMKD Study Group. Uric acid as a risk factor for progression of non-diabetic chronic kidney disease? the Mild to Moderate Kidney Disease (MMKD) Study. Exp Gerontol. 2008;43:347-352. https://doi.org/10.1016/j.exger.2008.01.006.   DOI
24 Jalal DI, Chonchol M, Chen W, Targher G. Uric acid as a target of therapy in CKD. Am J Kidney Dis. 2013;61:134-146. https://doi.org/10.1053/j.ajkd.2012.07.021.   DOI
25 Alberti KG, Zimmet P, Shaw J. Metabolic syndrome-a new world-wide definition. A Consensus Statement from the International Diabetes Federation. Diabet Med. 2006;23:469-480. https://doi.org/10.1111/j.1464-5491.2006.01858.x.   DOI
26 Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. Executive summary of the third report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III). JAMA. 2001;285:2486-2497.   DOI
27 Alberti KG, Zimmet P, Shaw J, IDF Epidemiology Task Force Consensus Group. The metabolic syndrome-a new worldwide definition. Lancet. 2005;366:1059-1062.   DOI
28 Alberti KG, Zimmet PZ. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabet Med. 1998;15:539-553. https://doi.org/10.1002/(SICI)1096-9136(199807)15:7<539::AID-DIA668>3.0.CO;2-S.   DOI
29 Shin KA. Association of metabolic syndrome with exercise capacity and heart rate recovery after treadmill exercise test. J Exp Biomed Sci. 2011;17:305-311.
30 Jalal DI, Maahs DM, Hovind P, Nakagawa T. Uric acid as a mediator of diabetic nephropathy. Semin Nephrol. 2011;31:459-465. https://doi.org/10.1016/j.semnephrol.2011.08.011.   DOI
31 Shin KA. Association between resting heart rate and risk factors of metabolic syndrome in Korean men. The Journal of Korea Society for Wellness. 2015;10: 305-316.
32 Alberti KG, Eckel RH, Grundy SM, Zimmet PZ, Cleeman JI, Donato KA, et al. Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation. 2009;120:1640-1645. https://doi.org/10.1161/CIRCULATIONAHA.109.192644.   DOI
33 Lee CH, Sung NY. The prevalence and features of Korean gout patients using the National Health Insurance Corporation Database. J Rheum Dis. 2011;18:94-100. https://doi.org/10.4078/jrd.2011.18.2.94.   DOI
34 Facchini F, Chen YD, Hollenbeck CB, Reaven GM. Relationship between resistance to insulin-mediated glucose uptake, urinary uric acid clearance, and plasma uric acid concentration. JAMA. 1991;266:3008-3011.   DOI
35 Li M, Gu L, Yang J, Lou Q. Serum uric acid to creatinine ratio correlates with ${\beta}$-cell function in type 2 diabetes. Diabetes Metab Res Rev. 2018;34:e3001. https://doi.org/10.1002/dmrr.3001.   DOI
36 Shin KA. Clinical usefulness of serum uric acid and resting heart rate in the diagnosis of metabolic syndrome in Korean adults. Biomed Sci Letters. 2017;23:118-127. https://doi.org/10.15616/BSL.2017.23.2.118.   DOI