Browse > Article
http://dx.doi.org/10.5764/TCF.2020.32.2.96

Comparative Study of Detoxification Properties of 3-Aminopropyl trimethoxysilane and Chitosan treated Cotton Fabric  

Kwon, Woong (Department of Textile System Engineering, Kyungpook National University)
Kim, Changkyu (Department of Textile System Engineering, Kyungpook National University)
Jeong, Euigyung (Department of Textile System Engineering, Kyungpook National University)
Publication Information
Textile Coloration and Finishing / v.32, no.2, 2020 , pp. 96-102 More about this Journal
Abstract
Recently, it was reported that chitosan or APTMS(3-aminopropyltrimethoxysila ne) treatment to cotton using the simple pad-dry-cure method has potential to prepare textile materials for military chemical warfare protective clothing. However, it is not confirmed which method is more efficient. Therefore, this study aims to quantitatively compare detoxification properties of chitosan treated cotton fabric with those of APTMS treated cotton fabric. Detoxification properties were evaluated using the well-known organic phosphorous nerve agent stimulant, diisopropylfluorophosphate(DF P). With the same amount of chitosan and APTMS on the surface of the cotton fabrics, APTMS treated cotton fabric exhibited 10% higher detoxification properties than chitosan treated cotton fabric based on the rate of DFP hydrolysis and half-live of DFP calculated from the DFP decontamination ratios of the treated cotton fabrics through time. Therefore, APTMS treatment can be more efficient method to prepare the textile materials for military protective clothing than chitosan treatment.
Keywords
chitosan; 3-aminopropyltrimethoxysilane; chemical warfare agent; organic phosphorus nerve agents; diisopropylfluorophosphate;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 J. Lee, E. Seo, M. Yoo, S. Kim, J. Choi, H. Jung, H. W. Lee, H. M. Lee, H. Y. Kim, and B. Lee, Preparation of Non-woven Nanofiber Webs for Detoxification of Nerve Gases, Polymer, 2019(179), 121664(2019).
2 E. Lopez‐Maya, C. Montoro, L. M. Rodriguez-Albelo, S. D. A. Cervantes, A. A. Lozano‐Perez, J. L. Cenis, E. Barea, and J. A. Navarro, Textile/Metal-Organic‐Framework Composites as Self‐Detoxifying Filters for Chemical‐Warfare Agents, Angewandte Chemie International Edition, 54(23), 6790(2015).   DOI
3 W. Kwon, M. W. Han, and E. K. Jung, Chemical Warfare Agent Simulant Decontamination of Chitosan Treated Cotton Fabric, Textile Coloration and Finishing, 32(1), 51(2020).   DOI
4 S. Chauhan, R. D. Cruz, S. Faruqi, K. K. Singh, S. Varma, M. Singh, and V. Karthik, Chemical Warfare Agents, Environmental Toxicology and Pharmacology, 26(2), 113(2008).   DOI
5 S. S. Talmage, A. P. Waston, V. Hauschild, N. B. Munro, and J. King, Chemical Warfare Agent Degradation and Decontamination, Current Organic Chemistry, 11(3), 285(2007).   DOI
6 Y. C. Yang, Chemical Detoxification of Nerve Agent VX, Accounts of Chemical Research, 32(2), 109(1999).   DOI
7 R. T. Delfino, T. S. Ribeiro, and J. D. Figueroa-Villar, Organophosphorus Compounds as Chemical Warfare Agents: a Review, Journal of the Brazilian Chemical Society, 20(3), 407(2009).   DOI
8 C. Kim, W. Kwon, and E. Jeong, Detoxification Properties of Surface Aminated Cotton Fabric, Textile Coloration and Finishing, 32(2), 73(2020).   DOI
9 C. Chung, M. Lee, and E. K. Choe, Characterization of Cotton Fabric Scouring by FT-IR ATR Spectroscopy, Carbohydrate Polymers, 58(4), 417(2004).   DOI
10 Y. K. Kim, H. S. Yoo, M. C. Kim, H. C. Hwang, and S. G. Ryu, Decontamination of Chemical Warfare Agent Simulants using Vapor-phase Hydrogen Peroxide, Korean Chemical Engineering Research, 52(3), 360(2014).   DOI
11 D. R. Heiss, D. W. Zehnder, D. A. Jett, G. E. Platoff, D. T. Yeung, and B. N. Brewer, Synthesis and Storage Sability of Diisopropylfluorophosphate, Journal of Chemistry, 2016(1), 5(2016).
12 S. Y. Moon, E. Proussaloglou, G. W. Peterson, J. B. DeCoste, M. G. Hall, A. J. Howarth, J. T. Hupp, and O. K. Farha, Detoxification of Chemical Warfare Agents Using a Zr6‐Based Metal-Organic Framework/Polymer Mixture, Chemistry-A European Journal, 22(42), 14864(2016).   DOI
13 S. Y. Moon, G. W. Wagner, J. E. Mondloch, G. W. Peterson, J. B. DeCoste, J. T. Hupp, and O. K. Farha, Effective, Facile, and Selective Hydrolysis of the Chemical Warfare Agent VX using Zr6-based Metal-organic Frameworks, Inorganic Chemistry, 54(22), 10829(2015).   DOI
14 M. Boopathi, B. Singh, and R. Vijayaraghavan, A Review on NBC Body Protective Clothing, The Open Textile Journal, 1(1), 1(2008).   DOI
15 K. Ganesan, S. K. Raza, and R. Vijayaraghavan, Chemical Warfare Agents, Journal of Pharmacy and Bioallied Sciences, 2(3), 166(2010).   DOI
16 H. Thiemann, F. Worek, and K. Kehe, Limitations and Challenges in Treatment of Acute Chemical Warfare Agent Poisoning, Chemico-biological Interactions, 206(3), 435(2013).   DOI
17 T. L. Endrusick, J. A. Gonzalez, and R. R. Gonzalez, Improved Comfort of US Military Chemical and Biological Protective Clothing, Environmental Ergonomics, 2005(3), 369(2005).
18 M. A. R. Bhuiyan, L. Wang, A. Shaid, R. A. Shanks, and J. Ding, Advances and Applications of Chemical Protective Clothing System, Journal of Industrial Textiles, 49(1), 97(2019).   DOI
19 H. L. Schreuder-Gibson, Q. Truong, J. E. Walker, J. R. Owens, J. D. Wander, and W. E. Jones, Chemical and Biological Protection and Detection in Fabrics for Protective Clothing, MRS Bulletin, 28(8), 574(2003).   DOI
20 N. K. Tripathi, V. V. Singh, M. Sathe, V. B. Thakare, and B. Singh, Activated Carbon Fabric: An Adsorbent Material for Chemical Protective Clothing, Defence Science Journal, 68(1), 83(2018).   DOI
21 W. B. Ying, S. Kim, M. W. Lee, N. Y. Go, H. Jung, S. G. Ryu, B. Lee, and K. J. Lee, Toward a Detoxification Fabric Against Nerve Gas Agents: Guanidine-functionalized Poly[2-(3-butenyl)-2-oxazoline]/Nylon-6,6 Nanofibers, RSC Advances, 25(7), 15246(2017).