Browse > Article
http://dx.doi.org/10.5805/SFTI.2022.24.6.812

Characterization of 3D Printed Re-entrant Strips Using Shape Memory Thermoplastic Polyurethane with Various Infill Density  

Imjoo Jung (Dept. Fashion & Textiles, Dong-A University)
Sunhee Lee (Dept. Fashion Design, Dong-A University)
Publication Information
Fashion & Textile Research Journal / v.24, no.6, 2022 , pp. 812-824 More about this Journal
Abstract
This study proposes to develop a 3D printed re-entrant(RE) strip by shape memory thermoplastic polyurethane that can be deformed and recovered by thermal stimulation. The most suitable 3D printing infill density condition and temperature condition during shape recovery for mechanical behavior were confirmed. As the poisson's ratio indicated, the higher the recovery temperature, the closer the poisson's ratio to zero and the better the auxetic properties. After recovery testing for five minutes, it appeared that the shape recovery ratio was the highest at 70℃. The temperature range when the shape recovery ratio appeared to be more than 90% was a recovery temperature of more than 50℃ and 60℃ when deformed under a constant load of 100 gf and 300 gf, respectively. This indicated that further deformation occurred after maximum recovery when recovered at a temperature of 80℃, which is above the glass transition temperature range. As for REstrip by infill density, a shape recovery properties of 100% was superior than 50%. Additionally, as the re-entrant structure exhibited a shape recovery ratio of more than 90%, and exhibited auxetic properties. It was confirmed that the infill density condition of 100% and the temperature condition of 70℃ are suitable for REstrips for applying the actuator.
Keywords
Shape memory thermoplastic polyurethan; auxetic re-entrant; poisson's ratio; shape recovery property; actuator;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Ji, X., Gao, F., Geng, Z., & Li, D. (2021). Fabrication of thermoplastic polyurethane/polylactide shape-memory blends with tunable optical and mechanical properties via a bilayer structure design. Polymer Testing, 97, 107135. doi:10.1016/j.polymertesting.2021.107135   DOI
2 Jung, I., Kim, H., & Lee, S. (2021). Characterizations of 3D printed re-entrant pattern/aramid knit composite prepared by various tilting angles. Fashion and Textiles, 8, 44. doi:10.1186/s40691-021-00273-6   DOI
3 Jung, I., Park, Y., Choi, Y., Kim, J., & Lee, S. (2022a). A study on the motion control of 3D printed fingers. Textile Science and Engineering, 24(3), 333-345. doi:10.5805/SFTI.2022.24.3.333   DOI
4 Jung, I., Shin, E., & Lee, S. (2022b). Morphological characteristics according to the 3D printing extrusion temperature of TPU filaments for different hardnesses. Textile Science and Engineering, 59(1), 36-46. doi:10.12772/TSE.2022.59.036   DOI
5 Jung, I., & Lee, S. (2022). Compressive properties of 3D printed TPU samples. Journal of the Korean Society of Clothing and Textiles, 46(3), 481-493. doi:10.5850/JKSCT.2022.46.3.481   DOI
6 Kabir, S., & Lee, S. (2020). Study of shape memory and tensile property of 3D printed sinusoidal sample/nylon composite focused on various thicknesses and shape memory cycles. Polymers, 12(7), 1600. doi:10.3390/polym12071600   DOI
7 Kabir, S., Kim, H., & Lee, S. (2020). Physical property of 3D-printed sinusoidal pattern using shape memory TPU filament. Textile Research Journal, 90(21-22), 2399-2410. doi:10.1177/0040517520919750   DOI
8 Kim, H., & Lee, S. (2020). Mechanical properties of 3D printed re-entrant pattern with various hardness types of TPU filament manufactured through FDM 3D printing. Textile Science and Engineering, 57, 166-176. doi:10.12772/TSE.2020.57.166   DOI
9 Kim, H., Kabir, S., & Lee, S. (2021). Mechanical properties of 3D printed re-entrant pattern/neoprene composite textile by pattern tilting angle of pattern. Journal of the Korean Society of Clothing and Textiles, 45(1), 106-122. doi:10.5850/JKSCT.2021.45.1.106   DOI
10 Lakes, R. S. (2017). Negative poisson's ratio materials - Auxetic solids. Annual Review of Materials Research, 47, 63-81. doi:10. 1146/annurev-matsci-070616-124118   DOI
11 Li, T., Liu, F., & Wang, L. (2020). Enhancing indentation and impact resistance in auxetic composite materials. Composites Part B - Engineering, 108229. doi:10.1016/j.compositesb.2020.108229   DOI
12 Momeni, F., Liu, X., & Ni, J. (2017). A review of 4D printing. Materials and Design. 122, 42-79. Doi:10.1016/j.matdes.2017.02.068   DOI
13 Nugroho, W. T., Dong, Y., Pramanik, A., Leng, J., & Ramakrishna, S. (2021). Smart polyurethane composites for 3D or 4D printing - General-purpose use, sustainability and shape memory effect. Composites Part B - Engineering, 223, 109104. doi:10.1016/j.compositesb.2021.109104   DOI
14 Raasch, J., Ivey, M., Aldrich, D., Nobes, D. S., & Ayranci, C. (2015). Characterization of polyurethane shape memory polymer processed by material extrusion additive manufacturing. Additive Manufacturing, 8, 132-141. doi:10.1016/j.addma.2015.09.004   DOI
15 Ren, X., Das, R., Tran, P., Ngo, T. D., & Xie, Y. M. (2018). Auxetic metamaterials and structures - A review. Smart Materials and Structures, 27(2), 023001. doi:10.1088/1361-665x/aaa61c   DOI
16 Sadasivuni, K. K., Deshmukh, K., Al-Maadeed, M. A. S. (2020). 3D and 4D printing of polymer nanocomposite materials: processes, applications, and challenges. Amsterdam: Elsevier.
17 Song, J. J., Chang, H. H., & Nagui b, H. E. (2015a). Biocompatible shape memory polymer actuators with high force capabilities. European Polymer Journal, 67, 186-198. doi:10.1016/j.eurpolymj.2015.03.067   DOI
18 Shin, E. J., Jung, Y. S., Chio, H. Y., & Lee, S. (2022a). Synthesis and fabrication of biobased thermoplastic polyurethane filament for FDM 3D printing. Applied Polymer, 139(40), e52959. doi:10.1002/pen.26075   DOI
19 Shin, E. J., Park, Y. Y., Jung, Y. S., Choi, H. Y., & Lee, S. (2022b). Fabrication and characteristics of flexible thermoplastic polyurethane filament for fused deposition modeling three-dimensional printing. Polymer Engineering and Science, 62(9), 2947-2957. doi:10.1002/pen.26075   DOI
20 Simons, M. F., Digumarti, K. M., Conn, A. T., & Rossiter, J. (2019). Tiled auxetic cylinders for soft robots. Proceedings of the 2019 2nd IEEE International Conference on Soft Robotics (RoboSoft), Seoul, Korea, pp. 62-67.
21 Song, J. J., Chang, H. H., & Naguib, H. E. (2015b). Design and characterization of biocompatible shape memory polymer(SMP) blend foams with a dynamic porous structure. Polymer, 56, 82-92. doi: 10.1016/j.polymer.2014.09.062   DOI
22 Valvez, S., Reis, P. N. B., Susmel, L., & Berto, F. (2021). Fused filament fabrication-4D-printed shape memory polymers - A review. Polymers, 13(5), 701. doi:10.3390/polym13050701   DOI
23 Xu, X., Fan, P., Ren, J., Cheng, Y., Ren, J., Zhao, J., & Song, R. (2018). Self-healing thermoplastic polyurethane(TPU)/polycaprolactone (PCL)/multi-wall carbon nanotubes (MWCNTs) blend as shape-memory composites. Composites Science and Technology, 168(10), 255-262. doi:10.1016/j.compscitech.2018.10.003   DOI
24 Villacres, J., Nobes, D., & Ayranci, C. (2020). Additive manufacturing of shape memory polymers - Effects of print orientation and infill percentage on shape memory recovery properties. Rapid Prototyping Journal, 26(9), 1593-1602. doi:10.1108/rpj-09-2019-0239   DOI
25 Wang, Y., Zheng, Z., Ding, X., & Peng, Y. (2014). Relation between temperature memory effect and multiple-shape memory behaviors based on polymer networks. RSC Advances, 4(39), 20364. doi:10.1039/c4ra02600d   DOI
26 Xi, H., Xu, J., Cen, S., & Huang, S. (2021). Energy absorption characteristics of a novel asymmetric and rotatable re-entrant honeycomb structure. Acta Mechanica Solida Sinica, 34(4), 550-560. doi:10.1007/s10338-021-00219-x   DOI
27 Dong, K., Panahi-Sarmad, M., Cui Z., Huang, X., & Xiao, X. (2021). Electro-induced shape memory effect of 4D printed auxetic composite using PLA/TPU/CNT filament embedded synergistically with continuous carbon fiber - A theoretical & experimental analysis. Composites Part B - Engineering, 220, 108994. doi:10.1016/j.compositesb.2021.108994   DOI
28 Abrisham, M., Panahi-Sarmad, M., Mir Mohamad Sadeghi, G., Arjmand, M., Dehghan, P., & Amirkiai, A. (2020). Microstructural design for enhanced mechanical property and shape memory behavior of polyurethane nanocomposites - Role of carbon nanotube, montmorillonite, and their hybrid fillers. Polymer Testing, 106642. doi:10.1016/j.polymertesting.2020.106642   DOI
29 Ardebili, M. K., Ikikardaslar, K. T., Chauca, E., & Delale, F. (2018). Behavior of soft 3D-printed auxetic structures under various loading conditions. Proceedings of the ASME 2018 International Mechanical Engineering Congress and Exposition, Pittsburgh, Pennsylvania, USA, pp. V009T12A027.
30 Choi, H. Y., Shin, E. J., & Lee, S. (2022). Design and evaluation of 3D-printed auxetic structures coated by CWPU/graphene as strain sensor. Scientific Reports, 12, 7780. doi:10.1038/s41598-022-11540-x   DOI
31 Drobny, J. G. (2014). Handbook of thermoplastic elastomers. Amsterdam: Elviser
32 Gorbunova, M. A., Anokhin, D. V., & Badamshina, E. R. (2020). Recent advances in the synthesis and application of thermoplastic semicrystalline shape memory polyurethanes. Polymer Science, Series B, 62(5), 427-450. doi:10.1134/s1560090420050073   DOI
33 Gu, X., & Mather, P. T. (2012). Entanglement-based shape memory polyurethanes - Synthesis and characterization. Polymer, 53(25), 5924-5934. doi:10.1016/j.polymer.2012.09.056   DOI