Browse > Article
http://dx.doi.org/10.35399/ISK.32.2.1

Genetic Diversity of the Slender Shinner(Pseudopuntungia tenuicorpa) and Its Conservational Implications  

Kim, Dong-Young (Department of Life Sciences, Yeungnam University)
Suk, Ho Young (Department of Life Sciences, Yeungnam University)
Publication Information
Korean Journal of Ichthyology / v.32, no.2, 2020 , pp. 39-48 More about this Journal
Abstract
The slender shinner (Pseudopungtungia tenuicorpa), a tiny freshwater fish of about 8 to 10 cm belonging to Cyprinidae, is an endangered species found only in the Han and Imjin Rivers on the Korean Peninsula. During the breeding season, this species spawns in nests of Coreoperca herzi, a predator of this species, or small crevices on rocks. This unique reproductive ecology can make this species more vulnerable to anthropogenic perturbance that can further limit the places to spawn. Here, mtDNA and microsatellite loci were analyzed to identify the genetic diversity and structure of slender shinners and further to provide the basic data necessary for the conservation planning of this species. A total of 28 polymorphic microsatellite markers were developed using Illumina paired-end sequencing, and 67 slender shinners collected from three localities in the Han River were genotyped using these loci. This species showed a remarkably high level of genetic diversity with mean expected heterozygosity of 0.914 and mean allele number per locus of 27.9, and no signature of drastic demographic decline was detected. As a result of our microsatellite analysis, the genetic structure between the two stems of the Han River, North Han and South Han, was prominent. Such a genetic structure was also evident in the sequence analysis of 14 haplotypes obtained from mtDNA control region. Although slender shinners are only found in very limited areas around the world, the genetic structure indicates that there is a block of gene flow among the populations, which should be reviewed in the future if management and restoration of this species is needed.
Keywords
Genetic diversity; slender shinner; Pseudopuntungia tenuicorpa; Cyprinidae; conservation genetics;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Piry, S., G. Luikart and J.M. Cornuet. 1999. BOTTLENECK: a computer program for detecting recent reductions in the effective population size using allele frequency data. J. Hered., 90: 502e503. https://doi.org/10.1093/jhered/90.4.502.   DOI
2 Pritchard, J.K., M. Stephens and P. Donnelly 2000. Inference of population structure using multilocus genotype data. Genetics, 155: 945-959.   DOI
3 Raymond, M. and F. Rousset. 1995. GENEPOP (version 1.2): population genetic software for exact tests and ecumenicism. J. Hered., 86: 248e249. https://doi.org/10.1093/oxfordjournals.jhered.a111573.   DOI
4 Reid, A.J., A.K. Carlson, I.F. Creed, E.J. Eliason, P.A. Gell, P.T.J. Johnson, K.A. Kidd, T.J. MacCormack, J.D. Olden, S.J. Ormerod, J.P. Smol, W.W. Taylor, K. Tockner, J.C. Vermaire, D. Dudgeon and S.J. Cooke. 2019. Emerging threats and persistent conservation challenges for freshwater biodiversity. Biol. Rev., 94: 849-873. https://doi.org/10.1111/brv.12480.   DOI
5 Smith, A.F.A., R. Hubley and P. Green. 2014. RepeatMasker Version 4.0.5. Available at: http://repeatmasker.org.
6 Stieneke, D.L. and I.A. Eujayl. 2007. Imperfect SSR Finder Version 1.0. Available at: http://ssr.nwisrl.ars.usda.gov/.
7 Tajima, F. 1989. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics, 123: 585-595.   DOI
8 Tamura, K., G. Stecher, D. Peterson, A. Filipski and S. Kumar. 2013. MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Mol. Biol. Evol., 30: 2725-2729. https://doi.org/10.1093/molbev/mst197.   DOI
9 Untergasser, A., I. Cutcutache, T. Koressaar, J. Ye, B.C. Faircloth, M. Remm and S.G. Rozen. 2012. Primer3-new capabilities and interfaces. Nucleic Acids Res., 40: e115. https://doi.org/10.1093/nar/gks596.   DOI
10 Valdez, J.W. and K. Mandrekar. 2019. Assessing the species in the CARES preservation program and the role of aquarium hobbyists in freshwater fish conservation. Fishes, 4: 1-10. https://doi.org/10.3390/fishes4040049.   DOI
11 van Oosterhout, C., W.F. Hutchinson, D.P.M. Wills and P. Shipley. 2004. Micro-checker: software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes, 4: 535-538. https://doi.org/10.1111/j.1471-8286.2004.00684.x.   DOI
12 Waples, R.S. and O. Gaggiotti. 2006. What is a population? An empirical evaluation of some genetic methods for identifying the number of gene pools and their degree of connectivity. Mol. Ecol., 15: 1419-1439. https://doi.org/10.1111/j.1365-294X.2006.02890.x.   DOI
13 Won, H., H.B. Jeon and H.Y. Suk. 2020. Evidence of an ancient connectivity and biogeodispersal of a bitterling species, Rhodeus notatus, across the Korean Peninsula. Sci. Rep., 10: 1-13. https://doi.org/10.1038/s41598-020-57625-3.   DOI
14 Weir, B.S. and C.C. Cockerham. 1984. Estimating F-statistics for the analysis of population structure. Evolution, 38: 1358-1370. https://doi.org/10.2307/2408641.   DOI
15 Yun, Y.E., J.N. Yu, S.K. Kim, U.W. Hwang and M. Kwak. 2013. Development of microsatellite markers in Pungtungia herzi using next-generation sequencing and cross-species amplification in the genus Pseudopungtungia. Int. J. Mol. Sci., 14: 19923-19931. https://doi.org/10.3390/ijms141019923.   DOI
16 Evanno, G., S. Regnaut and J. Goudet. 2005. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol. Ecol., 14: 2611-2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x.   DOI
17 Abdelkrim, J., B.C. Robertson, J.A.L. Stanton and N.J. Gemmell. 2009. Fast, cost-effective development of species-specific microsatellite markers by genomic sequencing. Biotechniques, 46: 185e191. https://doi.org/10.2144/000113084.   DOI
18 Clement, M., D. Posada and K.A. Crandall. 2000. TCS: a computer program to estimate gene genealogies. Mol. Ecol., 9: 1657-1659. https://doi.org/10.1046/j.1365-294x.2000.01020.x.   DOI
19 DeWoody, J.A. and J.C. Avise. 2000. Microsatellite variation in marine, freshwater and anadro-mous fishes compared with other animals. J. Fish Biol., 56: 461-473. https://doi.org/10.1111/j.1095-8649.2000.tb00748.x.   DOI
20 Earl, D.A. and B.M. vonHoldt. 2012. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour., 4: 359-36. https://doi.org/10.1007/s12686-011-9548-7.   DOI
21 Excoffier, L. and H.E. Lischer. 2010. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour., 10: 564-567. https://doi.org/10.1111/j.1755-0998.2010.02847.x.   DOI
22 Funk, W.C., J.K. McKay, P.A. Hohenlohe and F.W. Allendorf. 2012. Harnessing genomics for delineating conservation units. Trends Ecol. Evol., 27: 489-496. https://doi.org/10.1016/j.tree.2012.05.012.   DOI
23 Glaubitz, J.C. 2004. Convert: a user-friendly program to reformat diploid genotypic data for commonly used population genetic software packages. Mol. Ecol. Notes, 4: 309-310. https://doi.org/10.1111/j.1471-8286.2004.00597.x.   DOI
24 Goudet, J. 2001. FSTAT, a program to estimate and test gene diversities and fixation indices version 2.9.3. Availabe at: http://www.unil.ch/izea/softwares/fstat.html.
25 Guo, S.W. and E.A. Thompson. 1992. Performing the exact test of Hardy-Weinberg proportion for multiple alleles. Biometrics, 48: 361e372.   DOI
26 Harrison, I., R. Abell, W. Darwall, M.L. Thieme, D. Tickner and I. Timboe. 2018. The freshwater biodiversity crisis. Science, 362: 1369-1369. https://doi.org/10.1126/science.aav9242.
27 Kearse, M., R. Moir, A. Wilson, S. Stones-Havas, M. Cheung, S. Sturrock, S. Buxton, A. Cooper, S. Markowitz, C. Duran, T. Thierer, B. Ashton, P. Meintjes and A. Drummond. 2012. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics, 28: 1647-1649. https://doi.org/10.1093/bioinformatics/bts199.   DOI
28 Hwang, D.S., H.K. Byeon and J.S. Lee. 2014. Complete mitochondrial genome of the freshwater gudgeon, Pseudopungtungia tenuicorpa (Cypriniformes, Gobioninae). Mitochondrial DNA, 25: 3-4. https://doi.org/10.3109/19401736.2013.775261.   DOI
29 Jeon, H.B., J. An, S.M. Kweon, S. Kim, J.N. Yu, B.J. Kim, S. Kawase and H.Y. Suk. 2016. Development of novel microsatellite loci and analyses of genetic diversity in the endangered Tanakia somjinensis. Biochem. Syst. Ecol., 66: 344-350. https://doi.org/10.1016/j.bse.2016.05.006.   DOI
30 Jeon, S.R. and K.C. Choi. 1980. A new cyprinid fish, Pseudopungtungia tenuicorpus from Korea. Korean J. Zool., 23: 41-48.
31 Kim, I.S., Y. Choi, C.L. Lee, Y.J. Lee, B.J. Kim and J.H. Kim. 2005. Illustrated book of Korean fishes. Kyo Hak Publishing, Seoul, Korea, 615pp.
32 Kim, K.S., S.J. Moon, S.H. Han, K.Y. Kim and I.C. Bang. 2016. Polymorphic microsatellite markers for the endangered fish, the slender shiner Pseudopungtungia tenuicorpa and cross-species amplification across five related species. Genet. Mol. Res., 15: gmr.15038496. https://doi.org/10.4238/gmr.15038496.
33 Kim, K.Y., M.H. Ko, H. Liu, Q. Tang, X. Chen, J.I. Miyazaki and I.C. Bang. 2013. Phylogenetic relationships of Pseudorasbora, Pseudopungtungia, and Pungtungia (Teleostei; Cypriniformes; Gobioninae) inferred from multiple nuclear gene sequences. BioMed Res. Int., 2013: 347242. https://doi.org/10.1155/2013/347242.
34 Luikart, G., W.B. Sherwin, B.M. Steele and F.W. Allendorf. 1998. Usefulness of molecular markers for detecting population bottlenecks via monitoring genetic change. Mol. Ecol., 7: 963e974.   DOI
35 Ko, M.H., S.Y. Park and I.C. Bang. 2012. Egg development early life history of the Slender, Pseudopungtungia tenuicorpa (Pisces: Cyprinidae). Korean J. Ichthyol., 24: 48-55.
36 Kopelman, N.M., J. Mayzel, M. Jakobsson, N.A. Rosenberg and I. Mayrose. 2015. Clumpak: a program for identifying clustering modes and packaging population structure inferences across K. Mol. Ecol. Resour., 15: 1179-1191. https://doi.org/10.1111/1755-0998.12387.   DOI
37 Lee, H.H. 2011. Reproductive strategies of genus Pseudopungtungia and Pungtungia. Ph. D. Dissertation, Gunsan National University, Gunsan, Korea, 132pp.
38 Librado, P. and J. Rozas. 2009. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics, 25: 1451-1452. https://doi.org/10.1093/bioinformatics/btp187.   DOI
39 Liu, H. and Y. Chen. 2003. Phylogeny of the East Asian cyprinids inferred from sequences of the mitochondrial DNA control region. Canadian J. Zool., 81: 1938-1946. https://doi.org/10.1139/z03-169.   DOI
40 Luo, R., B. Liu, Y. Xie, Z. Li, W. Huang, J. Yuan, G. He, Y. Chen, Q. Pan, Y. Liu, J. Tang, G. Wu, H. Zhang, Y. Shi, Y. Liu, C. Yu, B. Wang, Y. Lu, C. Han, D.W. Cheung, S.M. Yiu, S. Peng, Z. Xiaoqian, G. Liu, X. Liao, Y. Li, H. Yang, J. Wang, T.W. Lam, J. Wang. 2012. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience, 1: 18. https://doi.org/10.1186/s13742-015-0069-2.   DOI
41 NIBR (National Institute of Biological Resources). 2012. Korean red list of threatened species: mammals, birds, reptiles, amphibians, fishes and vascular plants. National Institute of Biological Resources, Incheon, South Korea. 246pp.
42 Nei, M. 1987. Molecular evolutionary genetics. Columbia university press, New York, 512pp.