Browse > Article

Anti-Obese Effects of Mixture Contained Pine needle, Black Tea and Green Tea Extracts  

Jeon, Jeong-Ryae (Obesity-Diabetes Advanced Research Center, College of Medicine, Yeungnam University)
Kim, Jong-Yeon (Obesity-Diabetes Advanced Research Center, College of Medicine, Yeungnam University)
Lee, Kyung-Mi (LG-Bio Research Institute)
Cho, Duck-Hyung (LG-Bio Research Institute)
Publication Information
Applied Biological Chemistry / v.48, no.4, 2005 , pp. 375-381 More about this Journal
Abstract
The aims of this study were to evaluate the anti-obese effects of pine needle, black tea and green tea in rats and overweight people. Supplementation of 1, 2, 4 and 8% amount to the control diet of pine needle extract and mixture groups significantly decreased body weight gain and visceral fat mass compared with that of control diet group. Supplementation of 1, 2 and 4% amount to the control diet of black and green tea extracts groups significantly decreased body weight gain and visceral fat mass compared with that of control diet group. Anti-obese effect in body weight gain and visceral fat mass of mixture group was higher than in other groups. In human study, extracts mixture supplementation to overweight subjects significantly decreased both body weight and body fat compared with placebo control group. In vitro study, black and green tea extracts significantly inhibited both the pancreatic lipase and ${\alpha}-amylase$ activities dose dependently. In conclusion, the anti-obese effects of pine needle, black, and green teas in rats were found. In overweight human subjects, extracts mixture decreased body weight and body fat compared with placebo control group. Anti-obese effect in black and green tea groups might be from an decrease in carbohydrate and fat digestions via inhibition of pancreatic ${\alpha}-amylase$ and lipase activities in part.
Keywords
pine needle; black tea; green tea; visceral fat; pancreatic ${\alpha}$ amylase; lipase; obesity;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Chua, S. and Leibel, R. L. (1997) Obesity genes: molecular and metabolic mechanisms. Diabetes Rev. 5, 2-7
2 Lee, C. H., Choi, B. K., Lee, W. C., Park, C.I., Yuziro F. and Kimura, S. (1992) Effect of dietary protein levels, caffeine and green tea on body fat deposition in Wistar Rats. J. Korean Soc. Food Nutr. 21, 595-600
3 Chantre, P. and Lairon, D. (2002) Recent findings of green tea extract AR25 (Exolise) and its activity for the treatment of obesity. Phytomedicine 9, 3-8   DOI   ScienceOn
4 Bates, S. H., Jones, R. B. and Bailey, C. J. (2000) Insuln-like effect of pinitol. Br. J. Pharmacol. 130, 1944-1948   DOI   ScienceOn
5 Pan, D. A., Lillioja, S., Kriketos, A. D., Milner, M. R., Baur, L. A., Bogardus C., Jenkins, A. B. and Storlien, L. H. (1997) Skeletal muscle triglyceride levels are inversely related to insulin action. Diabetes 46, 983-988   DOI   ScienceOn
6 Dullo, A. G., Seydoux, J., Girardier, L., Chantre, P. and Vandermander, J. (2000) Green tea and thermogenesis: interactions between catechin-polyphenols, caffeine and sympathetic activity. Int. J. Obes. Relat. Metab. Disord 24, 252-258   DOI   ScienceOn
7 Davis, A., Christiansen, M., Horowitz, J. E, Klein, S., Hellerstein, M. K. and Ostlund, R. E. Jr.(2000) Effect of pinitol treatment on insulin action in subjects with insulin resistance. Diabetes Care 23, 1000-1005   DOI   ScienceOn
8 Jang, E. C. (2003) Effects of black tea on body weight gain and visceral tat mass in rats. Korean J. Physical Edu. 41, 507-514
9 Balentine, D. A., Ho, C. T., Lee, C. Y. and Huang, M. T. (1991) Phenolic compounds in food and their effect on health analysis, occurrence and chemistry. American Chemical Society, Washington, DC, pp. 102-116
10 Storlien, L. H., Baur, L. A., Kriketos, A. D., Pan, D. A., Cooney, G. J., Jenkins, A. B., Calvert, G.D. and Campbell L.Y.(1996) Dietary fats and insulin action. Diabetologia 39, 621-631   DOI   ScienceOn
11 Sayama, K., Lin, S., Zheng, G. and Oguni, I. (2000) Effects of green tea on growth, food utilization and lipid metabolism in mice. In Vivo 14, 481-484
12 Kelley, D. E. and Mandarino, L. J. (2000) Fuel selection in human skeletal muscle in insulin resistance: a reexamination. Diabetes 49, 677-683   DOI   ScienceOn
13 Yamamoto, M., Shimura, S., Itoh, Y., Ohsaka, T., Egawa, M. and Inoue, S. (2000) Anti-obesity effects of lipase inhibitor CT-II, an extract from edible herbs, Nomame Herba, on rats fed a high-tat diet. Int. J. Obes. Relat. Metab. Disord 24, 758-764   DOI   ScienceOn
14 Kim, J. Y., Nolte, L. A., Hansen, P. A., Han, D. H., Kawanaka, K. and Holloszy, J. O. (1999) Insulin resistance of muscle glucose transport in male and female rats fed a high-sucrose diet. Am. J. Physiol. 276, 665-672
15 Yang, M. H., Wang, C. H. and Chen, H. L., (2001) Green, oolong and black tea extracts modulate lipid metabolism in hyperlipidemia rats fed high-sucrose diet. J. Nutr. Biochem. 12, 14-20   DOI   ScienceOn
16 Kim, S. M. and Cho, Y. S. (1999) Effect of pine needle extract on Fe ion and active oxygen related lipid oxidation in oil emulsion. Korean J-Harvest Sci Technol. Agri. Products 6, 115-120
17 Kim, J. Y., Nolte, L. A., Hansen, P. A., Han, D. H., Ferguson, K. and Holloszy, J. O.(2000) High tat diet induced muscle insulin resistance: Relationship to visceral fat mass. Am. J. Physiol. 279, 2057-2063
18 Sin, M. K., and Jung, W. H. (2000) The effect on rats serum lipid of treadmill exercise and green tea extracts intake with high tat diet. J. Korean Soc. Food Nutr. 29, 683-690
19 Gupta, S., Saha, A. and Girl, A. K. (2002) Comparative antimutagenic and anticlastogenic effects of green tea and black tea: A review. Mutation Research 512, 37-65   DOI   ScienceOn
20 Horton, T. J. and Geissler, C. A. (1996) Post-prandial thermogenesis with ephedrine, caffeine and aspirin in lean, predisposed obese and obese women. Int. J. Obes. Relat. Metab. Disord 20, 91-97
21 Kelley, D. E., Thaete, F. L., Troost, F., Huwe, T. and Goodpaster, B. H. (2000) Subdivisions of subcutaneous abdominal adipose tissue and insulin resistance. Am. J. Physiol. Endocrinol. Metab. 278, 941-948
22 Raz, I., Eldor, R., Cemea, S. and Shafrir, E. (2005) Diabetes: insulin resistance and derangements in lipid metabolism. Cure through intervention in fat transport and storage. Diabetes Metab. Res. Rev. 21, 3-14   DOI   ScienceOn
23 Bernfeldt, P. (1955) Amylase, $\alpha$ and $\beta$, Methods in Enzymology 1, 149-150   DOI
24 Kao, Y. H., Hiipakka, R. A. and Liao, S. (2000) Modulation of obesity by a green tea catechin. Am. J. Clin. Nutr. 72, 1232-1234, 2000
25 Jeon J. R. and Park, G. S. (1999) Korean green tea by Ku Jeung Ku Po's 1. Analysis of general compositions and chemical compositions. Korean J. Soc. Food Sci. 15, 95-101
26 Lee, E. (2003) Effects of powdered pine needle (pinus densiflora seib et Zucc.) on serum and liver lipid composition and antioxidative capacity in rats fed high oxidized fat. J. Korean Soc. Food Nutr. 32, 926-930
27 Lee, Y. J., An, M. S. and Hong K. H. (1998) A sudy on the content of general compounds, amino acid, vitamins, catechins, alkaloids in green, Oolong and black tea. J. Fd. Hyg. Safety 13, 377-382
28 Dullo, A. G., Duret, C., Rohrer, D., et al.(1999) Efficacy of a green tea extract rich in catechin polyphenols and caffeine in increasing 24-h energy expenditure and fat oxidation in humans. Am. J. Clin. Nutr. 70, 1040-1045
29 Kim, E. S. and Kim, M. K. (1999) Effect of dried leaf powders and ethanol extracts of Persimmon, green tea and pine needle on lipid metabolism and antioxidative capacity in rats. Korean J. Nutrition 32, 337-352