Browse > Article
http://dx.doi.org/10.9718/JBER.2022.43.3.170

Integrated Hybrid Device for High-Efficiency Size-Tunable Particle Separation  

Choo, Seung Hee (College of Life Sciences and Bio engineering, Incheon National University)
Park, Jion (Department of Song-do Bio Engineering, Incheon Jaeneung University)
Kim, Tae Eun (Artificial Intelligent-Bio Research Center, Incheon Jaeneung University)
Gang, Tae Gyeoung (Department of Song-do Bio Engineering, Incheon Jaeneung University)
An, Jun Seok (Department of Song-do Bio Engineering, Incheon Jaeneung University)
Oh, Gayeong (Department of Song-do Bio Engineering, Incheon Jaeneung University)
Kim, Yeojin (Department of Song-Do Bio Life Engineering, Incheon Jaeneung University)
Park, Kyu Been (Department of Song-Do Bio Life Engineering, Incheon Jaeneung University)
Park, Chaewon (Department of Song-Do Bio Life Engineering, Incheon Jaeneung University)
Lee, Minjeong (Department of Song-Do Bio Life Engineering, Incheon Jaeneung University)
Lim, Hyunjung (Artificial Intelligent-Bio Research Center, Incheon Jaeneung University)
Nam, Jeonghun (Department of Song-do Bio Engineering, Incheon Jaeneung University)
Publication Information
Journal of Biomedical Engineering Research / v.43, no.3, 2022 , pp. 170-176 More about this Journal
Abstract
Cell separation from a heterogenous mixture sample is an essential process for downstream analysis in biological, chemical, and clinical applications. This study demonstrates an integrated hybrid device of the viscoelastic focusing in a straight rectangular channel and subsequent size-based separation using acoustophoresis to attain high efficiency and separation tunability. For particle pre-alignment in a viscoelastic fluid, the flow rate higher than 10 μl/min was required. Surface acoustic wave-based lateral migration of particles with different sizes (13 and 27 ㎛) was examined at various applied voltages and flow rate conditions. Therefore, the flow rate of 100 μl/min and the applied voltage of 20 Vpp can be used for size-based particle separation.
Keywords
Hybrid device; Viscoelastic focusing; Surface acoustic wave; Separation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Cho H, Kim J, Song H, Sohn KY, Jeon M, Han KH. Microfluidic technologies for circulating tumor cell isolation. Analyst. 2018;143:2936-2970.   DOI
2 Shields IV CW, Reyes CD, Lopez GP. Microfluidic cell sorting: a review of the advances in the separation of cells from debulking to rare cell isolation. Lab Chip, 2015;15:1230-1249.   DOI
3 Barret LM, Skulan AJ, Singh AK, Cummings EB, Fiechtner GJ. Dielectrophoretic Manipulation of Particles and Cells Using Insulating Ridges in Faceted Prism Microchannels. Anal. Chem. 2005;77(21):6798-6804.   DOI
4 Vahey MD, Volman J. An equilibrium method for continuous- flow cell sorting using dielectrophoresis. Anal. Chem. 2008;80(9):3135-3143.   DOI
5 Hoshino K, Huang YY, Lane N, Huebschman M, Uhr JW, Frenkel EP, Zhang X. Microchip-based immunomagnetic detection of circulating tumor cells. Lab Chip, 2011;11:3449-3457.   DOI
6 Shi J, Mao X, Ahmed D, Colleti A, Huang TJ. Focusing microparticles in a microfluidic channel with standing surface acoustic waves (SSAW). Lab Chip, 2008;8:221-223.   DOI
7 Shi J, Ahmed D, Mao X, Lin SCS, Lawit A, Huang TJ. Acoustic tweezers: patterning cells and microparticles using standing surface acoustic waves (SSAW). Lab Chip, 2009;9:2890-2895.   DOI
8 Zhou J, Giridhar PV, Kasper S, Papautsky I. Modulation of aspect ratio for complete separation in an inertial microfluidic channel. Lab Chip, 2013;13:1919-1929.   DOI
9 Huang LR, Cox EC, Austin RH, Sturm JC. Continuous Particle Separation Through Deterministic Lateral Displacement. Science, 2004;304(5673):987-990.   DOI
10 Minzioni P, Osellame R, Sada C, Zhao S, Omenetto F, Gylfason KB, Haraldsson T, Zhang Y, Ozcan A, Wax A. Roadmap for optofluidics. J. Opt. 2017;19:093003.   DOI
11 Nam J, Jang WS, Lim CS. Non-electrical powered continuous cell concentration for enumeration of residual white blood cells in WBC-depleted blood using a viscoelastic fluid. Talanta, 2019;197:12-19.   DOI
12 Warkiani ME, Tay AKP, Khoo BL, Xiaofeng X, Han J, Lim CT. Malaria detection using inertial microfluidics. Lab Chip, 2015;15:1101-1109.   DOI
13 Leake KD, Phillips BS, Yuzvinsky TD, Hawkins AR, Schmidt H. Optical particle sorting on an optofluidic chip. Opt. Exp. 2013;21(26):32605-32610.   DOI
14 Hur SC, Brinckerhoff TZ, Walthers CM, Dunn JC, Carlo DD. Label-Free Enrichment of Adrenal Cortical Progenitor Cells Using Inertial Microfluidics. Plos One, 2012;7(10):e46550.   DOI
15 Tan MK, Tjeung R, Ervin H, Yeo LY, Friend J. Double aperture focusing transducer for controlling microparticle motions in trapezoidal microchannels with surface acoustic waves. Appl. Phys. Lett. 2009;95:134101.   DOI
16 Nam J, Lim H, Kim C, Kang JY, Shin S. Density-dependent separation of encapsulated cells in a microfluidic channel by using a standing surface acoustic wave. Biomicrofluidics, 2012;6(2):024120.   DOI
17 Wang K, Zhou W, Lin Z, Cai F, Li F, Wu J, Meng L, Niu L, Zheng H. Sorting of tumour cells in a microfluidic device by multi-stage surface acoustic waves. Sens. Actu. B: Chem. 2018;258:1174-1183.   DOI
18 Choi S, Park JK. Continuous hydrophoretic separation and sizing of microparticles using slanted obstacles in a microchannel. Lab Chip, 2007;7:890-897.   DOI
19 Hsu CH, Carlo DD, Chen C, Irimia D, Toner M. Microvortex for focusing, guiding and sorting of particles. Lab Chip, 2008;8:2128-2134.   DOI
20 Huang P, Feng J, Hu HH, Joseph DD. Direct simulation of the motion of solid particles in Couette and Poiseuille flows of viscoelastic fluids. J. Fluid Mech. 1997;343:73.   DOI
21 Lee DJ, Brenner H, Youn JR, Song YS. Multiplex Particle Focusing via Hydrodynamic Force in Viscoelastic Fluids. Sci. Rep. 2013;3:3258.   DOI
22 Nam J, Jang WS, Lim CS. Micromixing using a conductive liquid-based focused surface acoustic wave (CL-FSAW). Sens. Actu. B: Chemical, 2018;258:991-997.   DOI
23 Nam J, Lim H, Kim D, Shin S. Separation of platelets from whole blood using standing surface acoustic waves in a microchannel. Lab Chip, 2011;11:3361-3364.   DOI
24 Shi J, Huang H, Stratton Z, Huang Y, Huang TJ. Continuous particle separation in a microfluidic channelvia standing surface acoustic waves (SSAW). Lab Chip, 2009;9:3354-3359.   DOI
25 Nam J. Lim CS. A conductive liquid-based surface acoustic wave device. Lab Chip, 2016;16:3750-3755.   DOI
26 Nam J, Shin Y, Tan JKS, Lim YB, Lim CT, Kim S. Highthroughput malaria parasite separation using a viscoelastic fluid for ultrasensitive PCR detection. Lab Chip, 2016;16:2086-2092.   DOI
27 Li D, Lu X, Xuan X. Viscoelastic Separation of Particles by Size in Straight Rectangular Microchannels: A Parametric Study for a Refined Understanding. Anal. Chem. 2016;88(24):12303-12309.   DOI
28 Kang K, Lee SS, Hyun K, Lee SJ, Kim JM. DNA-based highly tunable particle focuser. Nat. Comm. 2013;4:2567.   DOI
29 Lim EJ, Ober, TJ, Edd JF, Desai SP, Neal D, Bong KW, Doyle PS, McKinley GH, Toner M. Inertio-elastic focusing of bioparticles in microchannels at high throughput. Nat. Comm. 2014;5:4120.   DOI
30 Leshansky AM, Branky A, Korin N, Dinnar U. Tunable Nonlinear Viscoelastic "Focusing" in a Microfluidic Device. Phys. Rev, Lett. 2007;98:234501.   DOI
31 Nam J, Namgung B, Lim CT, Bae JE, Leo HL, Cho KS, Kim S. Microfluidic device for sheathless particle focusing and separation using a viscoelastic fluid. J. Chrom. A, 2015;1406:244-250.   DOI
32 Lu X, Xuan X. Elasto-Inertial Pinched Flow Fractionation for Continuous Shape-Based Particle Separation. Anal. Chem. 2015;87(22):11523-11530.   DOI
33 Nam J, Jang WS, Lim CS. Viscoelastic Separation and Concentration of Fungi from Blood for Highly Sensitive Molecular Diagnostics, Sci. Rep. 2019;9:3067.   DOI
34 Nam J. Tan JKS, Khoo BL, Namgung B, Leo HL, Lim CT, Kim S. Hybrid capillary-inserted microfluidic device for sheathless particle focusing and separation in viscoelastic flow. Biomicrofluidics, 2015;9(6):064117.   DOI
35 Lai JJ, Nelson KE, Nash MA, Hoffman S, Yager P, Stayton PS. Dynamic bioprocessing and microfluidic transport control with smart magnetic nanoparticles in laminar-flow devices. Lab Chip, 2009;9:1997-2002.   DOI
36 Giudice FD, Madadi H, Villone MM, D'Avino G, Cusano AM, Vecchione R, Ventre M, Maffettone PL, Netti PA. Magnetophoresis 'meets' viscoelasticity: deterministic separation of magnetic particles in a modular microfluidic device. Lab Chip, 2015;15:1912-1922.   DOI
37 Xiang N, Wang J, Li Q, Han Y, Huang D, Ni Z. Precise Size-Based Cell Separation via the Coupling of Inertial Microfluidics and Deterministic Lateral Displacement. Anal. Chem. 2019;91(15):10328-10334.   DOI
38 Nam J, Kim JY, Lim CS. Continuous sheathless microparticle and cell patterning using CL-SSAWs (conductive liquid-based standing surface acoustic waves). AIP Adv. 2017;7: 015314.   DOI
39 Luong TD, Nguyen NT. Surface Acoustic Wave Driven Microfluidics - A Review. Micro Nanosys. 2010;2(3):217-225.   DOI
40 Kim MJ, Lee DJ, Youn JR, Song YS. Two step label free particle separation in a microfluidic system using elasto-inertial focusing and magnetophoresis. RSC Adv. 2016;6:32090-32097.   DOI
41 Lim H, Back SM, Hwang MH, Lee DH, Choi H, Nam J. Sheathless High-Throughput Circulating Tumor Cell Separation Using Viscoelastic non-Newtonian Fluid. Micromachines, 2019;10(7):462.   DOI
42 Brouzes E, Medkova M, Savenelli N, Marran D, Twardowski M, Hutchison JB, Rothberg JM, Link DR, Perrimon N, Samuels ML. Droplet microfluidic technology for single-cell highthroughput screening. Proc. Nat. Aca. Sci. 2009;106(34):14195-14200.   DOI
43 Huang NT, Chen W, Oh BR, Cornell TT, Shanley TP, Fu J, Kurabayashi K. An integrated microfluidic platform for in situ cellular cytokine secretion immunophenotyping. Lab Chip. 2012;12:4093-4101.   DOI
44 Nam J, Lim H, Kim D, Shin S. Separation of platelets from whole blood using standing surface acoustic waves in a microchannel. Lab Chip, 2011;11:3361-3364.   DOI
45 Ho B, Leal L. Migration of rigid spheres in a two-dimensional unidirectional shear flow of a second-order fluid. J. Fluid, Mech. 1976;76(4):783.   DOI
46 Karimi A, Yazdi S, Ardekani A. Hydrodynamic mechanisms of cell and particle trapping in microfluidics. Biomicrofluidics, 2013;7:021501.   DOI
47 Gao Y, Wu M, Lin Y, Xu J. Acoustic Microfluidic Separation Techniques and Bioapplications: A Review. Micromachines, 2020;11(10):921.   DOI