Browse > Article
http://dx.doi.org/10.9718/JBER.2021.42.6.295

Correlation Analysis Between Gait Pattern and Structural Features of Cerebral Cortex in Patients with Idiopathic Normal Pressure Hydrocephalus  

Yun, EunKyeong (Department of Biomedical Engineering, Daegu Catholic University)
Kang, Kyunghun (Department of Neurology, School of Medicine, Kyungpook National University)
Yoon, Uicheul (Department of Biomedical Engineering, Daegu Catholic University)
Publication Information
Journal of Biomedical Engineering Research / v.42, no.6, 2021 , pp. 295-303 More about this Journal
Abstract
Idiopathic normal-pressure hydrocephalus (INPH) is considered a potentially treatable neurological disorder by shunt surgery and characterized by a triad of symptoms including gait disturbance, cognitive impairment and urinary dysfunction. Although disorders of white matter are generally viewed as the principal pathological features of INPH, analysis of cortical features are important since the destruction of neural tracts could be associated with cortical structural changing. The aim of the study was to determine whether there was any relationship between gait parameter and structural features of cerebral cortex in INPH patients. Gait parameters were measured as follows: step width, toe in/out angle, coefficient of variation (CV) value of stride length, CV value of stride time. After obtaining individual brain MRI of patients with INPH and hemispheric cortical surfaces were automatically extracted from each MR volume, which reconstructed the inner and outer cortical surface. Then, cortical thickness, surface area, and volume were calculated from the cortical surface. As a result, step width was positively correlated with bilateral postcentral gyrus and left precentral gyrus, and toe in/out was positively correlated with left posterior parietal cortex and left insula. Also, the CV value of stride length showed positive correlation in the right superior frontal sulcus, left insula, and the CV value of stride time showed positive correlation in the right superior frontal sulcus. Unique parameter of cerebral cortical changes, as measured using MRI, might underline impairments in distinct gait parameters in patients with INPH.
Keywords
Idiopathic normal-pressure hydrocephalus; Gait disturbance; Magnetic resonance imaging; Cortical thickness; Cortical surface area; Cortical volume;
Citations & Related Records
연도 인용수 순위
  • Reference
1 McDonough AL, Batavia M, Chen FC, Kwon S, Ziai J, The validity and reliability of the GAITRite system's measurements: A preliminary evaluation. Arch Phys Med Rehabil, 2001;82(3):419-25.   DOI
2 Seo SW, Ahn J, Yoon U, Im K, Lee JM, Kim ST, Ahn HJ, Chin J, Jeong Y, Na DL, Cortical thinning in vascular mild cognitive impairment and vascular dementia of subcortical type. J Neuroimaging, 2010;20(1):37-45.   DOI
3 Zijdenbos AP, Forghani R, Evans AC, Automatic "pipeline" analysis of 3-D MRI data for clinical trials: application to multiple sclerosis. IEEE Trans Med Imaging, 2002;21(10):1280-91.   DOI
4 Adams RD, Fisher CM, Hakim S, Ojemann RG, Sweet WH, Symptomatic Occult Hydrocephalus with "Normal" Cerebrospinal-Fluid Pressure.A Treatable Syndrome. N Engl J Med, 1965;273:117-26.   DOI
5 Bech-Azeddine R, Hogh P, Juhler M, Gjerris F, Waldemar G, Idiopathic normal-pressure hydrocephalus: clinical comorbidity correlated with cerebral biopsy findings and outcome of cerebrospinal fluid shunting. J Neurol Neurosurg Psychiatry, 2007;78(2):157-61.   DOI
6 Wikkelso C, Andersson H, Blomstrand C, Lindqvist G, The clinical effect of lumbar puncture in normal pressure hydrocephalus. J Neurol Neurosurg Psychiatry, 1982; 45(1):64-9.   DOI
7 Ishikawa M, Hashimoto M, Kuwana N, Mori E, Miyake H, Wachi A, Takeuchi T, Kazui H, Koyama H, Guidelines for management of idiopathic normal pressure hydrocephalus. Neurol Med Chir (Tokyo), 2008;48 Suppl:S1-23.   DOI
8 van Uden CJ, Besser MP, Test-retest reliability of temporal and spatial gait characteristics measured with an instrumented walkway system (GAITRite). BMC Musculoskelet Disord, 2004;5:13.   DOI
9 Nelson AJ, Zwick D, Brody S, Doran C, Pulver L, Rooz G, Sadownick M, Nelson, Rothman J, The validity of the GaitRite and the Functional Ambulation Performance scoring system in the analysis of Parkinson gait. NeuroRehabilitation, 2002;17(3):255-62.   DOI
10 Lim YH, Ko PW, Park KS, Hwang SK, Kim SH, Han J, Yoon U, Lee HW, Kang K, Quantitative Gait Analysis and Cerebrospinal Fluid Tap Test for Idiopathic Normal-pressure Hydrocephalus. Sci Rep, 2019;9(1):16255.   DOI
11 Fortea J, Sala-Llonch R, Bartres-Faz D, Bosch B, Llado A, Bargallo N, Molinuevo JL, Sanchez-Valle R, Increased cortical thickness and caudate volume precede atrophy in PSEN1 mutation carriers. J Alzheimers Dis, 2010;22(3):909-22.   DOI
12 Johnston B, Atkins MS, Mackiewich B, Anderson M, Segmentation of multiple sclerosis lesions in intensity corrected multispectral MRI. IEEE Trans Med Imaging, 1996;15(2):154-69.   DOI
13 Braak H, Braak E, Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol, 1991;82(4):239-59.   DOI
14 Stolze H, Kuhtz-Buschbeck JP, Drucke H, Johnk K, Diercks C, Palmie S, Mehdorn HM, Illert M, Deuschl G, Gait analysis in idiopathic normal pressure hydrocephalus--which parameters respond to the CSF tap test? Clin Neurophysiol, 2000;111(9):1678-86.   DOI
15 Kang K, Han J, Lee SW, Jeong SY, Lim YH, Lee JM, Yoon U, Abnormal cortical thickening and thinning in idiopathic normal-pressure hydrocephalus. Sci Rep, 2020;10(1):21213.   DOI
16 Smith SM, Fast robust automated brain extraction. Hum Brain Mapp, 2002;17(3):143-55.   DOI
17 Tohka J, Zijdenbos A, Evans A, Fast and robust parameter estimation for statistical partial volume models in brain MRI. Neuroimage, 2004;23(1):84-97.   DOI
18 Lerch JP, Pruessner JC, Zijdenbos A, Hampel H, Teipel SJ, Evans AC, Focal decline of cortical thickness in Alzheimer's disease identified by computational neuroanatomy. Cereb Cortex, 2005;15(7):995-1001.   DOI
19 Kato T, Sato H, Emi M, Seino T, Arawaka S, Iseki C, Takahashi Y, Wada M, Kawanami, T, Segmental copy number loss of SFMBT1 gene in elderly individuals with ventriculomegaly: a community-based study. Intern Med, 2011;50(4):297-303.   DOI
20 Takahashi Y, Kawanami T, Nagasawa H, Iseki C, Hanyu H, Kato T, Familial normal pressure hydrocephalus (NPH) with an autosomal-dominant inheritance: a novel subgroup of NPH. J Neurol Sci, 2011;308(1-2):149-51.   DOI
21 Chetelat G, Landeau B, Eustache F, Mezenge F, Viader F, de la Sayette V, Desgranges B, Baron JC, Using voxel-based morphometry to map the structural changes associated with rapid conversion in MCI: a longitudinal MRI study. Neuroimage, 2005;27(4):934-46.   DOI
22 Worker A, Blain C, Jarosz J, Chaudhuri KR, Barker GJ, Williams SC, Brown R, Leigh PN, Simmons A, Cortical thickness, surface area and volume measures in Parkinson's disease, multiple system atrophy and progressive supranuclear palsy. PLoS One, 2014;9(12):e114167.   DOI
23 Rimol LM, Nesvag R, Hagler DJ, Jr., Bergmann O, Fennema-Notestine C, Hartberg CB, Haukvik UK, Lange E, Pung CJ, Server A, Melle I, Andreassen OA, Agartz I, Dale AM, Cortical volume, surface area, and thickness in schizophrenia and bipolar disorder. Biol Psychiatry, 2012;71(6):552-60.   DOI
24 Rosano C, Aizenstein HJ, Studenski S, Newman AB, A regions-of-interest volumetric analysis of mobility limitations in community-dwelling older adults. J Gerontol A Biol Sci Med Sci, 2007;62(9):1048-55.   DOI
25 Jahn K, Deutschlander A, Stephan T, Strupp M, Wiesmann M, Brandt T, Brain activation patterns during imagined stance and locomotion in functional magnetic resonance imaging. Neuroimage, 2004;22(4):1722-31.   DOI
26 Miller JM, McAllister JP, 2nd, Reduction of astrogliosis and microgliosis by cerebrospinal fluid shunting in experimental hydrocephalus. Cerebrospinal Fluid Res, 2007;4:5.   DOI
27 Hilal S, Xin X, Ang SL, Tan CS, Venketasubramanian N, Niessen WJ, Vrooman H, Wong TY, Chen C, Ikram MK, Risk Factors and Consequences of Cortical Thickness in an Asian Population. Medicine (Baltimore), 2015;94(23):e852.   DOI
28 Ishii K, Hashimoto M, Hayashida K, Hashikawa K, Chang CC, Nakagawara J, Nakayama T, Mori S, Sakakibara R, A multicenter brain perfusion SPECT study evaluating idiopathic normal-pressure hydrocephalus on neurological improvement. Dement Geriatr Cogn Disord, 2011;32(1):1-10.   DOI
29 Vargas-Sanchez K, Mogilevskaya M, Rodriguez-Perez J, Rubiano MG, Javela JJ, Gonzalez-Reyes RE, Astroglial role in the pathophysiology of status epilepticus: an overview. Oncotarget, 2018;9(42):26954-26976.   DOI
30 Fukuyama H, Ouchi Y, Matsuzaki S, Nagahama Y, Yamauchi H, Ogawa M, Kimura J, Shibasaki H, Brain functional activity during gait in normal subjects: a SPECT study. Neurosci Lett, 1997;228(3):183-6.   DOI
31 Baril AA, Gagnon K, Brayet P, Montplaisir J, De Beaumont L, Carrier J, Lafond C, L'Heureux F, Gagnon JF, Gosselin N, Gray Matter Hypertrophy and Thickening with Obstructive Sleep Apnea in Middle-aged and Older Adults. Am J Respir Crit Care Med, 2017;195(11):1509-1518.   DOI
32 Relkin N, Marmarou A, Klinge P, Bergsneider M, Black PM, Diagnosing idiopathic normal-pressure hydrocephalus. Neurosurgery, 2005;57(3 Suppl):S4-16;discussion ii-v.
33 Collins DL, Neelin P, Peters TM, Evans AC, Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space. J Comput Assist Tomogr, 1994;18(2):192-205.   DOI
34 Sled JG, Zijdenbos AP, Evans AC, A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans Med Imaging, 1998;17(1):87-97.   DOI
35 Espeseth T, Westlye LT, Fjell AM, Walhovd KB, Rootwelt H, Reinvang I, Accelerated age-related cortical thinning in healthy carriers of apolipoprotein E epsilon 4. Neurobiol Aging, 2008;29(3):329-40.   DOI
36 Lacquaniti F, Guigon E, Bianchi L, Ferraina S, Caminiti R, Representing spatial information for limb movement: role of area 5 in the monkey. Cereb Cortex, 1995;5(5):391-409.   DOI
37 Kim JS, Singh V, Lee JK, Lerch J, Ad-Dab'bagh Y, MacDonald D, Lee JM, Kim SI, Evans AC, Automated 3-D extraction and evaluation of the inner and outer cortical surfaces using a Laplacian map and partial volume effect classification. Neuroimage, 2005;27(1):210-21.   DOI
38 MacDonald D, Kabani N, Avis D, Evans AC, Automated 3-D extraction of inner and outer surfaces of cerebral cortex from MRI. Neuroimage, 2000;12(3):340-56.   DOI
39 Hagler DJ, Jr., Saygin AP, Sereno MI, Smoothing and cluster thresholding for cortical surface-based group analysis of fMRI data. Neuroimage, 2006;33(4):1093-103.   DOI
40 Lyttelton O, Boucher M, Robbins S, Evans A, An unbiased iterative group registration template for cortical surface analysis. Neuroimage, 2007;34(4):1535-44.   DOI
41 Mataro M, Matarin M, Poca MA, Pueyo R, Sahuquillo J, Barrios M, Junque C, Functional and magnetic resonance imaging correlates of corpus callosum in normal pressure hydrocephalus before and after shunting. J Neurol Neurosurg Psychiatry, 2007;78(4):395-8.
42 Gao Z, Zhu Q, Zhang Y, Zhao Y, Cai L, Shields CB, Cai J, Reciprocal modulation between microglia and astrocyte in reactive gliosis following the CNS injury. Mol Neurobiol, 2013;48(3):690-701.   DOI
43 Gaist D, Hougaard A, Garde E, Reislev NL, Wiwie R, Iversen P, Madsen CG, Blaabjerg M, Nielsen HH, Kroigard T, Ostergaard K, Kyvik KO, Hjelmborg J, Madsen K, Siebner HR, Ashina M, Migraine with visual aura associated with thicker visual cortex. Brain, 2018;141(3):776-785.   DOI
44 Kaas JH, Evolution of somatosensory and motor cortex in primates. Anat Rec A Discov Mol Cell Evol Biol, 2004; 281(1):1148-56.   DOI
45 Rosano C, Aizenstein H, Brach J, Longenberger A, Studenski S, Newman AB, Special article: gait measures indicate underlying focal gray matter atrophy in the brain of older adults. J Gerontol A Biol Sci Med Sci, 2008;63(12):1380-8.   DOI
46 Rosso AL, Studenski SA, Chen WG, Aizenstein HJ, Alexander NB, Bennett DA, Black, SE, Camicioli R, Carlson MC, Ferrucci L, Guralnik JM, Hausdorff JM, Kaye J, Launer LJ, Lipsitz LA, Verghese J, Rosano C, Aging, the central nervous system, and mobility. J Gerontol A Biol Sci Med Sci, 2013; 68(11):1379-86.   DOI
47 Drew T, Prentice S, Schepens B, Cortical and brainstem control of locomotion. Prog Brain Res, 2004;143:251-61.   DOI
48 Takakusaki K, Neurophysiology of gait: from the spinal cord to the frontal lobe. Mov Disord, 2013;28(11):1483-91.   DOI
49 Regnaux JP, Pradon D, Roche N, Robertson J, Bussel B, Dobkin B, Effects of loading the unaffected limb for one session of locomotor training on laboratory measures of gait in stroke. Clin Biomech (Bristol, Avon), 2008;23(6):762-8.   DOI
50 Stolze H, Kuhtz-Buschbeck JP, Drucke H, Johnk K, Illert M, Deuschl G, Comparative analysis of the gait disorder of normal pressure hydrocephalus and Parkinson's disease. J Neurol Neurosurg Psychiatry, 2001;70(3):289-97.   DOI
51 Mackenzie TN, Bailey AZ, Mi PY, Tsang P, Jones CB, Nelson AJ, Human area 5 modulates corticospinal output during movement preparation. Neuroreport, 2016;27(14):1056-60.   DOI
52 Anderson TJ, Jenkins IH, Brooks DJ, Hawken MB, Frackowiak RS, Kennard C, Cortical control of saccades and fixation in man. A PET study. Brain, 1994;117(Pt 5):1073-84.   DOI
53 Fink GR, Frackowiak RS, Pietrzyk U, Passingham RE, Multiple nonprimary motor areas in the human cortex. J Neurophysiol, 1997;77(4):2164-74.   DOI
54 Cabral D, Beach TG, Vedders L, Sue LI, Jacobson S, Myers K, Sabbagh MN, Frequency of Alzheimer's disease pathology at autopsy in patients with clinical normal pressure hydrocephalus. Alzheimers Dement, 2011;7(5):509-13.   DOI