Browse > Article
http://dx.doi.org/10.9718/JBER.2021.42.3.125

The Principle and Trends of CRISPR/Cas Diagnosis  

Park, Jeewoong (Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation)
Kang, Bong Keun (Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation)
Shin, Hwa Hui (Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation)
Shin, Jun Geun (Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation)
Publication Information
Journal of Biomedical Engineering Research / v.42, no.3, 2021 , pp. 125-142 More about this Journal
Abstract
The POCT (point-of-care test) sensing that has been a fast-developing field is expected to be a next generation technology in health care. The POCT sensors for the detection of proteins, small molecules and especially nucleic acids have lately attracted considerable attention. According to the World Health Organization (WHO), the POCT methods are required to follow the ASSURED guidelines (Affordable, Sensitive, Specific, User- friendly, Robust and rapid, Equipment-free, Deliverable to all people who need the test). Recently, several CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) based diagnostic techniques using the sensitive gene recognition function of CRISPR have been reported. CRISPR/Cas (Cas, CRISPR associated protein) systems based detection technology is the most innovative gene analysis technology that is following the ASSURED guidelines. It is being re-emerged as a powerful diagnostic tool that can detect nucleic acids due to its characteristics that enable rapid, sensitive and specific analyses of nucleic acid. The first CRISPR-based diagnosis begins with the discovery of the additional function of Cas13a. The enzymatic cleavage occurs when the conjugate of Cas protein and CRISPR RNA (crRNA) detect a specific complementary sequence of the target sequence. Enzymatic cleavage occurs on not only the target sequence, but also all surrounding non-target single-stranded RNAs. This discovery was immediately utilized as a biosensor, and numerous sensor studies using CRISPR have been reported since then. In this review, the concept of CRISPR, the characteristics of the Cas protein required for CRISPR diagnosis, the current research trends of CRISPR diagnostic technology, and some aspects to be improved in the future are covered.
Keywords
CRISPR/Cas; Diagnosis; POCT; Nucleic acid;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Sullivan TJ, Dhar AK, Cruz-Flores R, et al. Rapid, CRISPR-Based, Field-Deployable Detection Of White Spot Syndrome Virus In Shrimp. Sci. Rep. 2019;9:1-7.   DOI
2 Wu H, He J song, Zhang F, et al. Contamination-Free Visual Detection of CaMV35S Promoter Amplicon Using CRISPR/Cas12a Coupled with a Designed Reaction Vessel: Rapid, Specific and Sensitive. Anal. Chim. Acta 2020;1096:130-137.   DOI
3 Li L, Li S, Wu N, et al. HOLMESv2: A CRISPR-Cas12b-Assisted Platform for Nucleic Acid Detection and DNA Methylation Quantitation SI. ACS Synth. Biol. 2019;3:1-5.   DOI
4 Kleinstiver BP, Pattanayak V, Prew MS, et al. High-Fidelity CRISPR-Cas9 Nucleases with No Detectable Genome-Wide off-Target Effects. Nature 2016;529:490-495.   DOI
5 Ran FA, Hsu PD, Lin CY, et al. Double Nicking by RNA-Guided CRISPR Cas9 for Enhanced Genome Editing Specificity. Cell 2013;154:1380-1389.   DOI
6 Park J-W, Lee SJ, Ren S, et al. Acousto-Microfluidics for Screening of SsDNA Aptamer. Sci. Rep. 2016;6:27121.   DOI
7 Kleinstiver BP, Tsai SQ, Prew MS, et al. Genome-Wide Specificities of CRISPR-Cas Cpf1 Nucleases in Human Cells. Nat. Biotechnol. 2016;34:869-874.   DOI
8 Slaymaker IM, Gao L, Zetsche B, et al. Rationally Engineered Cas9 Nucleases with Improved Specificity. Science (80-.). 2016;351:84 LP-88.   DOI
9 Gootenberg JS, Abudayyeh OO, Kellner MJ, et al. Multiplexed and Portable Nucleic Acid Detection Platform with Cas13, Cas12a and Csm6. Science (80-.). 2018;360:439-444.   DOI
10 Karvelis T, Bigelyte G, Young JK, et al. PAM Recognition by Miniature CRISPR-Cas12f Nucleases Triggers Programmable Double-Stranded DNA Target Cleavage. Nucleic Acids Res. 2020;48:5016-5023.   DOI
11 Dincer C, Bruch R, Kling A, et al. Multiplexed Point-of-Care Testing - XPOCT. Trends Biotechnol. 2017;35:728-742.   DOI
12 Pattanayak V, Lin S, Guilinger JP, et al. High-Throughput Profiling of off-Target DNA Cleavage Reveals RNA-Programmed Cas9 Nuclease Specificity. Nat. Biotechnol. 2013;31:839-843.   DOI
13 Strohkendl I, Saifuddin FA, Rybarski JR, et al. Kinetic Basis for DNA Target Specificity of CRISPR-Cas12a. Mol. Cell 2018;71:816-824.e3.   DOI
14 Sundaresan R, Parameshwaran HP, Yogesha SD, et al. RNA-Independent DNA Cleavage Activities of Cas9 and Cas12a. Cell Rep. 2017;21:3728-3739.   DOI
15 Li Y, Liu L, Liu G CRISPR/Cas Multiplexed Biosensing: A Challenge or an Insurmountable Obstacle? Trends Biotechnol. 2019;37:792-795.   DOI
16 O'Geen H, Henry IM, Bhakta MS, et al. A Genome-Wide Analysis of Cas9 Binding Specificity Using ChIP-Seq and Targeted Sequence Capture. Nucleic Acids Res. 2015;43:3389-3404.   DOI
17 Wang R, Qian C, Pang Y, et al. OpvCRISPR: One-Pot Visual RT-LAMP-CRISPR Platform for SARS-Cov-2 Detection. Biosens. Bioelectron. 2021;172:112766.   DOI
18 Green AA, Silver PA, Collins JJ, et al. Toehold Switches: De-Novo-Designed Regulators of Gene Expression. Cell 2014;159:925-939.   DOI
19 Chang Y, Deng Y, Li T, et al. Visual Detection of Porcine Reproductive and Respiratory Syndrome Virus Using CRISPR-Cas13a. Transbound. Emerg. Dis. 2020;67:564-571.   DOI
20 Wang L, Shen X, Wang T, et al. A Lateral Flow Strip Combined with Cas9 Nickase-Triggered Amplification Reaction for Dual Food-Borne Pathogen Detection. Biosens. Bioelectron. 2020; 165:112364.   DOI
21 Ishino Y, Shinagawa H, Makino K, et al. Nucleotide Sequence of the Iap Gene, Responsible for Alkaline Phosphatase Isoenzyme Conversion in Escherichia Coli, and Identification of the Gene Product. J. Bacteriol. 1987;169:5429-5433.   DOI
22 Li S, Gu Y, Lyu Y, et al. Integrated Graphene Oxide Purification-Lateral Flow Test Strips (IGOP-LFTS) for Direct Detection of PCR Products with Enhanced Sensitivity and Specificity. Anal. Chem. 2017;89:12137-12144.   DOI
23 Xiong Y, Zhang J, Yang Z, et al. Functional DNA Regulated CRISPR-Cas12a Sensors for Point-of-Care Diagnostics of Non-Nucleic-Acid Targets. J. Am. Chem. Soc. 2020;142:207-213.   DOI
24 Nouri R, Tang Z, Dong M, et al. CRISPR-Based Detection of SARS-CoV-2: A Review from Sample to Result. Biosens. Bioelectron. 2021;178:113012.   DOI
25 Li SY, Cheng QX, Li XY, et al. CRISPR-Cas12a-Assisted Nucleic Acid Detection. Cell Discov. 2018;4:18-21.   DOI
26 Rahimi H, Salehiabar M, Barsbay M, et al. CRISPR Systems for COVID-19 Diagnosis. ACS Sensors 2021.
27 Zhu X, Wang X, Li S, et al. Rapid, Ultrasensitive, and Highly Specific Diagnosis of COVID-19 by CRISPR-Based Detection. ACS Sensors 2021;0-7.
28 Kosack CS, Page AL, Klatser PR A Guide to Aid the Selection of Diagnostic Tests. Bull. World Health Organ. 2017;95: 639-645.   DOI
29 Abudayyeh OO, Gootenberg JS, Konermann S, et al. C2c2 Is a Single-Component Programmable RNA-Guided RNA-Targeting CRISPR Effector. Science (80-.). 2016;353.   DOI
30 Gootenberg JS, Abudayyeh OO, Lee JW, et al. Nucleic Acid Detection with CRISPR-Cas13a/C2c2. Science (80-.). 2017; 356:438-442.   DOI
31 Mojica FJM, Diez-Villasenor C, Garcia-Martinez J, et al. Intervening Sequences of Regularly Spaced Prokaryotic Repeats Derive from Foreign Genetic Elements. J. Mol. Evol. 2005; 60:174-182.   DOI
32 Jiang F, Zhou K, Ma L, et al. A Cas9-Guide RNA Complex Preorganized for Target DNA Recognition. Science (80-.). 2015;348:1477-1481.   DOI
33 Chen JS, Ma E, Harrington LB, et al. CRISPR-Cas12a Target Binding Unleashes Single-Stranded DNase Activity. Science (80-.). 2018;360:436-439.   DOI
34 Slaymaker IM, Mesa P, Kellner MJ, et al. High-Resolution Structure of Cas13b and Biochemical Characterization of RNA Targeting and Cleavage. Cell Rep. 2019;26:3741-3751.e5.   DOI
35 Gasiunas G, Barrangou R, Horvath P, et al. Cas9-CrRNA Ribonucleoprotein Complex Mediates Specific DNA Cleavage for Adaptive Immunity in Bacteria. Proc. Natl. Acad. Sci. U. S. A. 2012;109:2579-2586.   DOI
36 Cong L, Ran FA, Cox D, et al. Multiplex Genome Engineering Using CRISPR/Cas Systems. Science (80-.). 2013;339:819-823.   DOI
37 Li Y, Li S, Wang J, et al. CRISPR/Cas Systems towards Next-Generation Biosensing. Trends Biotechnol. 2019;37: 730-743.   DOI
38 Qi LS, Larson MH, Gilbert LA, et al. Repurposing CRISPR as an RNA-Γuided Platform for Sequence-Specific Control of Gene Expression. Cell 2013;152:1173-1183.   DOI
39 Lei C, Li S-Y, Liu J-K, et al. The CCTL (Cpf1-Assisted Cutting and Taq DNA Ligase-Assisted Ligation) Method for Efficient Editing of Large DNA Constructs in Vitro. Nucleic Acids Res. 2017;45:e74.
40 Strecker J, Jones S, Koopal B, et al. Engineering of CRISPR-Cas12b for Human Genome Editing. Nat. Commun. 2019;10.
41 Abudayyeh OO, Gootenberg JS, Konermann S, et al. C2c2 Is a Single-Component Programmable RNA-Guided RNA-Targeting CRISPR Effector. Science (80-. ). 2016;353:aaf5573.   DOI
42 Myhrvold C, Freije CA, Gootenberg JS, et al. Field-Deployable Viral Diagnostics Using CRISPR-Cas13. Science (80-.). 2018;360:444-448.   DOI
43 Pickar-Oliver A, Gersbach CA The next Generation of CRISPR-Cas Technologies and Applications. Nat. Rev. Mol. Cell Biol. 2019;20:490-507.   DOI
44 East-Seletsky A, O'Connell MR, Knight SC, et al. Two Distinct RNase Activities of CRISPR-C2c2 Enable Guide-RNA Processing and RNA Detection. Nature 2016;538:270-273.   DOI
45 Bolotin A, Quinquis B, Sorokin A, et al. Clustered Regularly Interspaced Short Palindrome Repeats (CRISPRs) Have Spacers of Extrachromosomal Origin. Microbiology 2005; 151:2551-2561.   DOI
46 Nishimasu H, Ran FA, Hsu PD, et al. Crystal Structure of Cas9 in Complex with Guide RNA and Target DNA. Cell 2014;156:935-949.   DOI
47 Makarova KS, Haft DH, Barrangou R, et al. Evolution and Classification of the CRISPR-Cas Systems. Nat. Rev. Microbiol. 2011;9:467-477.   DOI
48 Walton RT, Christie KA, Whittaker MN, et al. Unconstrained Genome Targeting with Near-PAMless Engineered CRISPR-Cas9 Variants. Science (80-.). 2020;368:290-296.   DOI
49 Mali P, Yang L, Esvelt KM, et al. RNA-Guided Human Genome Engineering via Cas9. Science (80-.). 2013;339: 823-826.   DOI
50 Zhang K, Deng R, Teng X, et al. Direct Visualization of SingleNucleotide Variation in MtDNA Using a CRISPR/Cas9-Mediated Proximity Ligation Assay. J. Am. Chem. Soc. 2018;140:11293-11301.   DOI
51 Anderson EM, Haupt A, Schiel JA, et al. Systematic Analysis of CRISPR-Cas9 Mismatch Tolerance Reveals Low Levels of off-Target Activity. J. Biotechnol. 2015;211:56-65.   DOI
52 Makarova KS, Wolf YI, Iranzo J, et al. Evolutionary Classification of CRISPR-Cas Systems: A Burst of Class 2 and Derived Variants. Nat. Rev. Microbiol. 2020;18:67-83.   DOI
53 Abudayyeh OO, Gootenberg JS, Essletzbichler P, et al. RNA Targeting with CRISPR-Cas13. Nature 2017;550:280-284.   DOI
54 Hsu PD, Scott DA, Weinstein JA, et al. DNA Targeting Specificity of RNA-Guided Cas9 Nucleases. Nat. Biotechnol. 2013;31:827-832.   DOI
55 Kasetsirikul S, Shiddiky MJA, Nguyen N-T Challenges and Perspectives in the Development of Paper-Based Lateral Flow Assays. Microfluid. Nanofluidics 2020;24:17.   DOI
56 Dong H, Lei J, Ding L, et al. MicroRNA: Function, Detection, and Bioanalysis. Chem. Rev. 2013;113:6207-6233.   DOI
57 Kleinstiver BP, Sousa AA, Walton RT, et al. Engineered CRISPR-Cas12a Variants with Increased Activities and Improved Targeting Ranges for Gene, Epigenetic and Base Editing. Nat. Biotechnol. 2019;37:276-282.   DOI
58 Xiong E, Jiang L, Tian T, et al. Simultaneous Dual-Gene Diagnosis of SARS-CoV-2 Based on CRISPR/Cas9-Mediated Lateral Flow Assay. Angew. Chemie 2021;133:5367-5375.   DOI
59 Bai J, Lin H, Li H, et al. Cas12a-Based On-Site and Rapid Nucleic Acid Detection of African Swine Fever. Front. Microbiol. 2019;10:1-9.   DOI
60 Kaminski MM, Alcantar MA, Lape IT, et al. A CRISPR-Based Assay for the Detection of Opportunistic Infections Post-Transplantation and for the Monitoring of Transplant Rejection. Nat. Biomed. Eng. 2020;4:601-609.   DOI
61 Mukama O, Yuan T, He Z, et al. A High Fidelity CRISPR/Cas12a Based Lateral Flow Biosensor for the Detection of HPV16 and HPV18. Sensors Actuators, B Chem. 2020;316.
62 Tsou JH, Leng Q, Jiang F A CRISPR Test for Detection of Circulating Nuclei Acids. Transl. Oncol. 2019;12:1566-1573.   DOI
63 Wang X, Xiong E, Tian T, et al. Clustered Regularly Interspaced Short Palindromic Repeats/Cas9-Mediated Lateral Flow Nucleic Acid Assay. ACS Nano 2020;14:2497-2508.   DOI
64 Xu W, Jin T, Dai Y, et al. Surpassing the Detection Limit and Accuracy of the Electrochemical DNA Sensor through the Application of CRISPR Cas Systems. Biosens. Bioelectron. 2020;155:112100.   DOI
65 Chen JS, Doudna JA The Chemistry of Cas9 and Its CRISPR Colleagues. Nat. Rev. Chem. 2017;1.
66 Weckman NE, Ermann N, Gutierrez R, et al. Multiplexed DNA Identification Using Site Specific DCas9 Barcodes and Nanopore Sensing. ACS Sensors 2019;4:2065-2072.   DOI
67 Yang W, Restrepo-Perez L, Bengtson M, et al. Detection of CRISPR-DCas9 on DNA with Solid-State Nanopores. Nano Lett. 2018;18:6469-6474.   DOI
68 Nouri R, Jiang Y, Lian XL, et al. Sequence-Specific Recognition of HIV-1 DNA with Solid-State CRISPR-Cas12a-Assisted Nanopores (SCAN). ACS Sensors 2020;5:1273-1280.   DOI
69 Bruch R, Baaske J, Chatelle C, et al. CRISPR/Cas13a-Powered Electrochemical Microfluidic Biosensor for Nucleic Acid Amplification-Free MiRNA Diagnostics. Adv. Mater. 2019;31: 1905311.   DOI
70 Zhang D, Yan Y, Que H, et al. CRISPR/Cas12a-Mediated Interfacial Cleaving of Hairpin DNA Reporter for Electrochemical Nucleic Acid Sensing. ACS Sensors 2020;5:557-562.   DOI
71 Anderson KR, Haeussler M, Watanabe C, et al. CRISPR Off-Target Analysis in Genetically Engineered Rats and Mice. Nat. Methods 2018;15:512-514.   DOI
72 Zhang Y, Qian L, Wei W, et al. Paired Design of DCas9 as a Systematic Platform for the Detection of Featured Nucleic Acid Sequences in Pathogenic Strains. ACS Synth. Biol. 2017;6:211-216.   DOI
73 Shan Y, Zhou X, Huang R, et al. High-Fidelity and Rapid Quantification of MiRNA Combining CrRNA Programmability and CRISPR/Cas13a Trans-Cleavage Activity. Anal. Chem. 2019;91:5278-5285.   DOI
74 Myhrvold C, Freije CA, Gootenberg JS, et al. Field-Deployable Viral Diagnostics Using CRISPR-Cas13. Science (80-.). 2018;360:444-448.   DOI
75 Yin K, Ding X, Li Z, et al. Dynamic Aqueous Multiphase Reaction System for One-Pot CRISPR-Cas12a-Based Ultra-sensitive and Quantitative Molecular Diagnosis. Anal. Chem. 2020;92:8561-8568.   DOI
76 Shao N, Han X, Song Y, et al. CRISPR-Cas12a Coupled with Platinum Nanoreporter for Visual Quantification of SNVs on a Volumetric Bar-Chart Chip. Anal. Chem. 2019;91:12384-12391.   DOI
77 He Q, Yu D, Bao M, et al. High-Throughput and All-Solution Phase African Swine Fever Virus (ASFV) Detection Using CRISPR-Cas12a and Fluorescence Based Point-of-Care System. Biosens. Bioelectron. 2020;154.
78 Qin P, Park M, Alfson KJ, et al. Rapid and Fully Microfluidic Ebola Virus Detection with CRISPR-Cas13a. ACS Sensors 2019;4:1048-1054.   DOI
79 Qin P, Park M, Alfson KJ, et al. Rapid and Fully Microfluidic Ebola Virus Detection with CRISPR-Cas13a. ACS Sensors 2019;4:1048-1054.   DOI
80 Wu X, Scott DA, Kriz AJ, et al. Genome-Wide Binding of the CRISPR Endonuclease Cas9 in Mammalian Cells. Nat. Biotechnol. 2014;32:670-676.   DOI
81 Kuscu C, Arslan S, Singh R, et al. Genome-Wide Analysis Reveals Characteristics of off-Target Sites Bound by the Cas9 Endonuclease. Nat. Biotechnol. 2014;32:677-683.   DOI
82 Chen JS, Dagdas YS, Kleinstiver BP, et al. Enhanced Proof-reading Governs CRISPR-Cas9 Targeting Accuracy. Nature 2017;550:407-410.   DOI
83 Mukama O, Wu J, Li Z, et al. An Ultrasensitive and Specific Point-of-Care CRISPR/Cas12 Based Lateral Flow Biosensor for the Rapid Detection of Nucleic Acids. Biosens. Bioelectron. 2020;159:112143.   DOI
84 Hu M, Yuan C, Tian T, et al. Single-Step, Salt-Aging-Free, and Thiol-Free Freezing Construction of AuNP-Based Bioprobes for Advancing CRISPR-Based Diagnostics. J. Am. Chem. Soc. 2020;142:7506-7513.   DOI
85 Qiu X-YY, Zhu LL-YY, Zhu C-SS, et al. Highly Effective and Low-Cost MicroRNA Detection with CRISPR-Cas9. ACS Synth. Biol. 2018;7:807-813.   DOI
86 Tsai SQ, Wyvekens N, Khayter C, et al. Dimeric CRISPR RNA-Guided FokI Nucleases for Highly Specific Genome Editing. Nat. Biotechnol. 2014:32:569-576.   DOI
87 Yuan C, Tian T, Sun J, et al. Universal and Naked-Eye Gene Detection Platform Based on the Clustered Regularly Interspaced Short Palindromic Repeats/Cas12a/13a System. Anal. Chem. 2020;92:4029-4037.   DOI
88 Tycko J, Myer VE, Hsu PD Methods for Optimizing CRISPR-Cas9 Genome Editing Specificity. Mol. Cell 2016;63:355-370.   DOI
89 Ke Y, Huang S, Ghalandari B, et al. Hairpin-Spacer CrRNAEnhanced CRISPR/Cas13a System Promotes the Specificity of Single Nucleotide Polymorphism (SNP) Identification. Adv. Sci. 2021;8:1-11.
90 Pardee K, Green AA, Takahashi MK, et al. Rapid, Low-Cost Detection of Zika Virus Using Programmable Biomolecular Components. Cell 2016;165:1255-1266.   DOI
91 Gootenberg JS, Abudayyeh OO, Lee JW, et al. Nucleic Acid Detection with CRISPR-Cas13a/C2c2. Science (80-.). 2017; 356:438 LP-442.   DOI
92 Zhou R, Li Y, Dong T, et al. A Sequence-Specific Plasmonic Loop-Mediated Isothermal Amplification Assay with Orthogonal Color Readouts Enabled by CRISPR Cas12a. Chem. Commun. 2020;56:3536-3538.   DOI
93 Katzmeier F, Aufinger L, Dupin A, et al. A Low-Cost Fluorescence Reader for in Vitro Transcription and Nucleic Acid Detection with Cas13a. PLoS One 2019;14:1-17.
94 Hajian R, Balderston S, Tran T, et al. Detection of Unamplified Target Genes via CRISPR-Cas9 Immobilized on a Graphene Field-Effect Transistor. Nat. Biomed. Eng. 2019;3:427-437.   DOI
95 English MA, Soenksen LR, Gayet R V, et al. Programmable CRISPR-Responsive Smart Materials. Science (80-.). 2019; 365:780 LP-785.   DOI
96 Dai Y, Somoza RA, Wang L, et al. Exploring the Trans-Cleavage Activity of CRISPR-Cas12a (Cpf1) for the Development of a Universal Electrochemical Biosensor. Angew. Chemie - Int. Ed. 2019;58:17399-17405.   DOI
97 Zhou W, Hu L, Ying L, et al. A CRISPR-Cas9-Triggered Strand Displacement Amplification Method for Ultrasensitive DNA Detection. Nat. Commun. 2018;9:1-11.   DOI
98 Hu JH, Miller SM, Geurts MH, et al. Evolved Cas9 Variants with Broad PAM Compatibility and High DNA Specificity. Nature 2018;556:57-63.   DOI
99 Konermann S, Lotfy P, Brideau NJ, et al. Transcriptome Engineering with RNA-Targeting Type VI-D CRISPR Effectors. Cell 2018;173:665-676.e14.   DOI
100 Harrington LB, Burstein D, Chen JS, et al. Programmed DNA Destruction by Miniature CRISPR-Cas14 Enzymes. Science (80-.). 2018;362:839-842.   DOI
101 Chatterjee P, Jakimo N, Jacobson JM Minimal PAM Specificity of a Highly Similar SpCas9 Ortholog Pranam. Sci. Adv. 2018;1-11.
102 Li H, Li M, Yang Y, et al. Aptamer-Linked CRISPR/Cas12a-Based Immunoassay. Anal. Chem. 2021;93:3209-3216.   DOI
103 Wang L, Zhao P, Si X, et al. Rapid and Specific Detection of Listeria Monocytogenes With an Isothermal Amplification and Lateral Flow Strip Combined Method That Eliminates False-Positive Signals From Primer-Dimers. Front. Microbiol. 2020;10:1-13.   DOI
104 Wu H, Qian C, Wu C, et al. End-Point Dual Specific Detection of Nucleic Acids Using CRISPR/Cas12a Based Portable Biosensor. Biosens. Bioelectron. 2020;157:112153.   DOI
105 Peng L, Zhou J, Liu G, et al. CRISPR-Cas12a Based Aptasensor for Sensitive and Selective ATP Detection. Sensors Actuators, B Chem. 2020;320:128164.   DOI
106 Jinek M, Chylinski K, Fonfara I, et al. A Programmable Dual-RNA-Guided DNA Endonuclease in Adaptive Bacterial Immunity. Science (80-.). 2012;337:816-821.   DOI
107 Kocak DD, Josephs EA, Bhandarkar V, et al. Increasing the Specificity of CRISPR Systems with Engineered RNA Secondary Structures. Nat. Biotechnol. 2019;37:657-666.   DOI