Browse > Article
http://dx.doi.org/10.9718/JBER.2020.41.6.219

Analysis of Actual Cross-Sectional Area During Scanning According to MRI Bore Size  

Jeong, Hyunkeun (Biomedical Engineering Lab, HK Research Center Inc.)
Jeong, Hyundo (Biomedical Engineering Lab, HK Research Center Inc.)
Kim, Seongho (Biomedical Engineering Lab, HK Research Center Inc.)
Jeon, Mincheol (Biomedical Engineering Lab, HK Research Center Inc.)
Yoo, Sejong (Biomedical Engineering Lab, HK Research Center Inc.)
Ko, Hyuncheol (Department of Anesthesiology and Pain Medicine, Seoul Sungsim General Hospital)
Cho, Yonghyun (Department of Anesthesiology and Pain Medicine, Seoul Sungsim General Hospital)
Publication Information
Journal of Biomedical Engineering Research / v.41, no.6, 2020 , pp. 219-227 More about this Journal
Abstract
In this study, we tried to quantify the actual cross-sectional area inside the bore when scanning by the MRI system with various bore sizes. To this end, a comparative analysis was conducted by both of blueprint of each MRI equipment and actual measurement in the field. As a result of analysis, ACSA(Actual Cross-Sectional Area) in Ingenia CX, Elition X, uMR 780, Omega, Vida, Lumina, Architect, Premier is recorded as 171230, 232150, 242100, 309332, 230760, 230760, 229380 and 235990 ㎟, respectively ACSA% was 60.6, 60.3, 73.0, 70.0, 60.0, 60.0, 59.6, and 61,3%. In addition, DTB (Distance from Table top to Bore top) recorded 400, 407, 445, 495, 405, 405, 405, 403, and 412 mm. Through this study, it was confirmed that there is a difference between the bore size according to each MRI system and the actual cross-sectional area during MRI scanning. Accordingly, if we consider the internal actual area just not bore size at the clinical site, useful diagnostic images can be obtained in the end with better convenience.
Keywords
MRI System; Bore size; Aperture size; Actual cross sectional area;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Jeong HK, Lee KH, Kim MH, Kim SH, Kim MG, Kim HC. Signal Intensity of Contrast Enhancement according to TE in 3.0T MRI T1 Imaging. Journal of Applied Science. 2018;8(7): 1138.   DOI
2 Kim SH, Kwon SY, Kang CH, Jeong HK, Kim SW, Park YJ, Han DK, Hong JW, Heo YC. Analysis of Peak Velocity and Mean Velocity According to Shimming Technique in 2D Phase Contrast : Comparison of 1.5T Tesla and 3.0 Tesla. Journal of Magnetics. 2018;23(2):201-6.   DOI
3 E. Hagberg, K. Scheffler. Effect of r(1) and r(2) relaxivity of gadolinium-based contrast agents on the T1-weighted MR signal at increasing magnetic field strengths. Contrast Media Mol Imaging. 2013;8(6):456-65.   DOI
4 Z. Seidl, J. Vymazal, M. Mechl, M. Goyal, M. Herman, C. Colosimo, M. Pasowicz, R. Yeung, B. Paraniak-Gieszczyk, B. Yemen, N. Anzalone, A. Citterio, G. Schneider, S. Bastianello, J. Ruscalleda. Does higher gadolinium concentration play a role in the morphologic assessment of brain tumors? Results of a multicenter intraindividual crossover comparison of gadobutrol versus gadobenate dimeglumine (the MERIT Study). AJN-RAmJNeuroradiol. 2012;33(6):1050-8.
5 Bloembergen N. Proton relaxation times in paramagnetic solution. J Chem Phys. 1957;27:572.   DOI
6 Just M, Thelen M. Tissue characterization with t1, t2, and proton density values: results in 160 patients with brain tumors. Radiology. 1988;169(3):779-785.   DOI
7 Maravilla KR, Smith MP, Vymazal J, Goyal M, Herman M, Baima JJ, Babbel R, Vaneckova M, Zizka J, Colosimo C, Urbanczyk-Zawadzka M, Mechl M, Bag AK, Bastianello S, Bueltmann, E, Hirai T, Frattini T, Kirchin MA, Pirovano G. Are there differences between macrocyclic gadolinium contrast agents for brain tumor imaging? Results of a multicenter intraindividual crossover comparison of gadobutrol with gadoteridol (the TRUTH study). AJNR Am J Neuroradiol 2015;36:14-23.   DOI
8 Maravilla KR, San-Juan D, Kim SJ, Elizondo-Riojas G, Fink JR, Escobar W, Bag A, Roberts DR, Hao J, Pitrou C, Tsiouris AJ, Herskovits E, Fiebach JB. Comparison of gadoterate meglumine and gadobutrol in the MRI diagnosis of primary brain tumors: A double-blind randomized controlled intraindividual crossover study (the REMIND study). AJNR Am J Neuroradiol 2017;38:1681-8.   DOI
9 Shen WC, Cheng TY, Lee SK, Ho YJ, Lee KR. Disseminated tuberculomas in spinal cord and brain demonstrated by MRI with gadolinium-DTPA. Neuroradiology. 1993;35:213-5.   DOI
10 Owen NJ, Sohaib SA, Peppercorn PD, Monson JP, Grossman AB, Besser GM, Reznek RH. MRI of pancreatic neuroendocrine tumours. Br J Radiol. 2001;74:968-73.   DOI
11 Jeong HK, Kim MK, Nam KC, Jung HD, Ahn CG, Kim HC. Optimal Echo Phase of FLASH sequence for Brain Enhancement scan of mouse at 9.4T MRI system. Journal of IEIE. 2017;54(7):115-24.   DOI
12 van Walderveen MAA, Barkhof F, Hommes OR, Polman CH, Tobi H, Frequin ST, Valk J. Correlating MRI and clinical disease activity in multiple sclerosis: relevance of hypointense lesions on short-TR/short-TE (T1-weighted) spin-echo images. Neurology. 1995;45:1684-90.   DOI
13 Bloembergen N, Purcell EM, Pound RV. Relaxation effects in nuclear magnetic resonance absorption. Phys Rev. 1948;73:679.   DOI
14 Rajan T. Gupta, Daniele Marin, Daniel T. Boll, Daniela B. Husarik, Drew E. Davis, Sebastian Feuerlein. Hepatic hemangiomas: Difference in enhancement pattern on 3T MR imaging with gadobenate dimeglumine versus gadoxetate disodium. European journal of Radiology. 2012;81(10):2457-62.   DOI