Browse > Article
http://dx.doi.org/10.9718/JBER.2019.40.5.189

Hippocampal and Ventricular Volumes of Idiopathic Normal-pressure Hydrocephalus and the Cerebrospinal Fluid Tap Test  

Kang, Kyunghun (Department of Neurology, School of Medicine, Kyungpook National University)
Han, Jaehwan (Department of Medical and Biological Engineering, Graduate School, Kyungpook National University)
Yoon, Uicheul (Department of Biomedical Engineering, Daegu Catholic University)
Publication Information
Journal of Biomedical Engineering Research / v.40, no.5, 2019 , pp. 189-196 More about this Journal
Abstract
We investigated differences in ventricular and hippocampal volumes between CSF tap test (CSFTT) responders and non-responders in idiopathic normal-pressure hydrocephalus (INPH) patients and compared these parameters in INPH patients with that of age- and gender-matched healthy controls. We also evaluated relationships between ventricular and hippocampal volumes and clinical profiles in INPH patients. We enrolled 48 patients with INPH and 29 healthy controls. Ventricular and hippocampal volumes were measured on MRI, including 3-dimensional volumetric images. INPH patients, when compared to healthy controls, had significantly larger ventricular and smaller hippocampal volumes. No difference in ventricular and hippocampal volumes was found between CSFTT responders and non-responders in INPH patients. And hippocampal volumes showed significant negative correlations with Clinical Dementia Rating Scale scores, INPH grading scale cognitive scores, Timed Up and Go Test scores, and Unified Parkinson's Disease Rating Scale motor scores in INPH patients. Volumetric assessment of ventricular and hippocampal regions may have no predictive value in differentiating between CSFTT responders and non-responders in INPH patients. Our findings may help us understand the potential pathophysiology of unique symptoms associated with INPH.
Keywords
Idiopathic normal pressure hydrocephalus; Cerebrospinal fluid tap test; Magnetic resonance imaging; Hippocampus;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Relkin N, Marmarou A, Klinge P, Bergsneider M, Black PM. Diagnosing idiopathic normal-pressure hydrocephalus. Neurosurgery. 2005;57(3 Suppl):S4-16.   DOI
2 Ishikawa M, Hashimoto M, Kuwana N, Mori E, Miyake H, Wachi A, et al. Guidelines for management of idiopathic normal pressure hydrocephalus. Neurologia medico-chirurgica. 2008;48 Suppl:S1-23.   DOI
3 Toma AK, Holl E, Kitchen ND, Watkins LD. Evans' index revisited: the need for an alternative in normal pressure hydrocephalus. Neurosurgery. 2011;68(4):939-44.   DOI
4 Kubo Y, Kazui H, Yoshida T, Kito Y, Kimura N, Tokunaga H, et al. Validation of grading scale for evaluating symptoms of idiopathic normal-pressure hydrocephalus. Dementia and geriatric cognitive disorders. 2008;25(1):37-45.   DOI
5 Kilic K, Czorny A, Auque J, Berkman Z. Predicting the outcome of shunt surgery in normal pressure hydrocephalus. Journal of clinical neuroscience : official journal of the Neurosurgical Society of Australasia. 2007;14(8):729-36.   DOI
6 Ravdin LD, Katzen HL, Jackson AE, Tsakanikas D, Assuras S, Relkin NR. Features of gait most responsive to tap test in normal pressure hydrocephalus. Clinical neurology and neurosurgery. 2008;110(5):455-61.   DOI
7 Johnston B, Atkins MS, Mackiewich B, Anderson M. Segmentation of multiple sclerosis lesions in intensity corrected multispectral MRI. IEEE transactions on medical imaging. 1996;15(2):154-69.   DOI
8 Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta neuropathologica. 1991;82(4):239-59.   DOI
9 Fox NC, Schott JM. Imaging cerebral atrophy: normal ageing to Alzheimer's disease. Lancet. 2004;363(9406):392-4.   DOI
10 Lee WJ, Wang SJ, Hsu LC, Lirng JF, Wu CH, Fuh JL. Brain MRI as a predictor of CSF tap test response in patients with idiopathic normal pressure hydrocephalus. Journal of neurology. 2010;257(10):1675-81.   DOI
11 Kohler S. Quantitative characterization of verbal learning deficits in patients with Alzheimer's disease. Journal of clinical and experimental neuropsychology. 1994;16(5):749-53.   DOI
12 Laakso MP, Soininen H, Partanen K, Helkala EL, Hartikainen P, Vainio P, et al. Volumes of hippocampus, amygdala and frontal lobes in the MRI-based diagnosis of early Alzheimer's disease: correlation with memory functions. Journal of neural transmission Parkinson's disease and dementia section. 1995;9(1):73-86.   DOI
13 Thompson PD, Nutt JG. Higher level gait disorders. Journal of neural transmission. 2007;114(10):1305-7.   DOI
14 Kang K, Yoon U, Choi W, Lee HW. Diffusion tensor imaging of idiopathic normal-pressure hydrocephalus and the cerebrospinal fluid tap test. Journal of the neurological sciences. 2016;364:90-6.   DOI
15 Chetelat G, Landeau B, Eustache F, Mezenge F, Viader F, de la Sayette V, et al. Using voxel-based morphometry to map the structural changes associated with rapid conversion in MCI: a longitudinal MRI study. NeuroImage. 2005;27(4):934-46.   DOI
16 Cabral D, Beach TG, Vedders L, Sue LI, Jacobson S, Myers K, et al. Frequency of Alzheimer's disease pathology at autopsy in patients with clinical normal pressure hydrocephalus. Alzheimer's & dementia : the journal of the Alzheimer's Association. 2011;7(5):509-13.   DOI
17 Hamilton R, Patel S, Lee EB, Jackson EM, Lopinto J, Arnold SE, et al. Lack of shunt response in suspected idiopathic normal pressure hydrocephalus with Alzheimer disease pathology. Annals of neurology. 2010;68(4):535-40.   DOI
18 Park S, Yoon U. Automated Segmentation of the Lateral Ventricle Based on Graph Cuts Algorithm and Morphological Operations. Journal of Biomedical Engineering Research. 2017;38(2):82-8.   DOI
19 Sled JG, Zijdenbos AP, Evans AC. A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE transactions on medical imaging. 1998;17(1):87-97.   DOI
20 Zijdenbos AP, Forghani R, Evans AC. Automatic "pipeline" analysis of 3-D MRI data for clinical trials: application to multiple sclerosis. IEEE transactions on medical imaging. 2002;21(10):1280-91.   DOI
21 Collins DL, Neelin P, Peters TM, Evans AC. Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space. Journal of computer assisted tomography. 1994;18(2):192-205.   DOI
22 Lotjonen J, Wolz R, Koikkalainen J, Julkunen V, Thurfjell L, Lundqvist R, et al. Fast and robust extraction of hippocampus from MR images for diagnostics of Alzheimer's disease. NeuroImage. 2011;56(1):185-96.   DOI
23 Malouin F, Richards CL, Jackson PL, Dumas F, Doyon J. Brain activations during motor imagery of locomotor-related tasks: a PET study. Human brain mapping. 2003;19(1):47-62.   DOI
24 Derflinger S, Sorg C, Gaser C, Myers N, Arsic M, Kurz A, et al. Grey-matter atrophy in Alzheimer's disease is asymmetric but not lateralized. Journal of Alzheimer's disease : JAD. 2011;25(2):347-57.   DOI
25 Thompson. PM, Hayashi. KM, Zubicaray. Gd, Jank. AL, Rose. SE, Semple. J, et al. Dynamics of Gray Matter Loss in Alzheimer's Disease. The Journal of Neuroscience. 2003;23(3):994-1005.   DOI
26 Kwak K, Yoon U, Lee DK, Kim GH, Seo SW, Na DL, et al. Fully-automated approach to hippocampus segmentation using a graph-cuts algorithm combined with atlas-based segmentation and morphological opening. Magnetic resonance imaging. 2013;31(7):1190-6.   DOI
27 Boykov Y, Kolmogorov V. An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE transactions on pattern analysis and machine intelligence. 2004;26(9):1124-37.   DOI
28 van der Lijn F, den Heijer T, Breteler MM, Niessen WJ. Hippocampus segmentation in MR images using atlas registration, voxel classification, and graph cuts. NeuroImage. 2008;43(4):708-20.   DOI
29 Wolz R, Heckemann RA, Aljabar P, Hajnal JV, Hammers A, Lotjonen J, et al. Measurement of hippocampal atrophy using 4D graph-cut segmentation: application to ADNI. NeuroImage. 2010;52(1):109-18.   DOI
30 Savolainen S, Laakso MP, Paljarvi L, Alafuzoff I, Hurskainen H, Partanen K, et al. MR imaging of the hippocampus in normal pressure hydrocephalus: correlations with cortical Alzheimer's disease confirmed by pathologic analysis. AJNR American journal of neuroradiology. 2000;21(2):409-14.
31 Ishikawa M, Oowaki H, Matsumoto A, Suzuki T, Furuse M, Nishida N. Clinical significance of cerebrospinal fluid tap test and magnetic resonance imaging/computed tomography findings of tight high convexity in patients with possible idiopathic normal pressure hydrocephalus. Neurologia medicochirurgica. 2010;50(2):119-23; disucussion 23.
32 Firbank MJ, Barber R, Burton EJ, O'Brien JT. Validation of a fully automated hippocampal segmentation method on patients with dementia. Human brain mapping. 2008;29(12):1442-9.   DOI
33 Kang K, Yoon U, Lee JM, Lee HW. Idiopathic normal-pressure hydrocephalus, cortical thinning, and the cerebrospinal fluid tap test. Journal of the neurological sciences. 2013;334(1-2):55-62.   DOI