Browse > Article
http://dx.doi.org/10.9718/JBER.2015.36.1.16

Development of Indocyanine Green and 5-Aminolevulinic Acid Detection System for Surgical Microscope  

Kim, Hong Rae (Biomedical Engineering Branch, Division of Convergence Technology, National Cancer Center)
Lee, Hyun Min (Biomedical Engineering Branch, Division of Convergence Technology, National Cancer Center)
Yoon, Woong Bae (Biomedical Engineering Branch, Division of Convergence Technology, National Cancer Center)
Kim, Young Jae (Biomedical Engineering Branch, Division of Convergence Technology, National Cancer Center)
Kim, Seok Ki (Molecular Imaging & Therapy Branch, National Cancer Center)
Yoo, Heon (Pediatric Oncology Branch & Hospital, National Cancer Center)
Joo, Jae Young (Lighting Technology Team, Korea Photonics Technology Institute)
Kim, Kwang Gi (Biomedical Engineering Branch, Division of Convergence Technology, National Cancer Center)
Lee, Seung-Hoon (Pediatric Oncology Branch & Hospital, National Cancer Center)
Publication Information
Journal of Biomedical Engineering Research / v.36, no.1, 2015 , pp. 16-21 More about this Journal
Abstract
Indocyanine green(ICG) and 5-aminolevulinic acid(5-ALA) have been widely used to mark blood vessels or tumors. However, fluorescent dye detection systems were designed to use one type of dyes only. In this study, we proposed a detection system capable of detecting Indocyanine green and 5-aminolevulinic acid. Multiple filters and light sources are integrated into a single system. In this study, we performed analysis of fluorescent dyes and configured a detection system. During the analysis, it was found that Indocyanine green and 5-aminolevulinic acid have the maximum intensity at $40{\mu}M$. We designed light source for fluorescent dyes and conducted compatibility test using a commercial surgical microscope. The fluorescent dye detection system was configured based on the experimental results. The developed system successfully detects Indocyanine green and 5-aminolevulinic acid. Therefore, more efficient surgical operations can be achieved using both fluorescent dyes at the same time. We expect that the developed system can increase the survival rate of patients.
Keywords
Fluorescence Image-Guided Surgery; Brain Glioma; Microscope; Indocyanine Green; 5-Aminolevulinic Acid;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 http://ncc.re.kr/hospital/centers/center07/clinic04/content_3396.jsp
2 J. C. Yoo, S. P. Lee, J. G. Kim, G. H. Choi, H. T. Yeo, "An Image Study of Malignant Glioma Model with Diffraction Enhanced Imaging Computed Tomography", Journal of Korean Brain Tumor Society, vol. 10, pp. 103-109, 2011.
3 A. Rück, C. Hauser, S. Lorenz, S. Mosch, S. Rotte, M. Kessler, S. Kalinina, "Cell metabolism, tumour diagnosis and multispectral FLIM." in SPIE BiOS. International Society for Optics and Photonics, 2013, San Francisco, California, USA, pp. 85880U-85880U-85888.
4 L. Teng, M. Nakada, Y. Hayashi, T. Yoneyama, S.-G. Zhao, J.-I. Hamada, Current Applications of 5-ALA in Glioma Diagnostics and Therapy, INTECH. 2013, pp. 249-261.
5 B. W. Pogue, S. L. Gibbs-Strauss, P. A. Valdés, K. S. Samkoe, D. W. Roberts, K. D. Paulsen, "Review of neurosurgical fluorescence imaging methodologies." Selected Topics in Quantum Electronics, vol. 16, PP. 493-505, 2010.   DOI
6 M. Schwake, D. Günes, M. Kochling, A. Brentrup, J. Schroeteler, M. Hotfilder, M. C. Fruehwald, W. Stummer, C. Ewelt, "Kinetics of porphyrin fluorescence accumulation in pediatric brain tumor cells incubated in 5-aminolevulinic acid." Acta neurochirurgica, vol. 156, pp. 1077-1084, 2014.   DOI
7 T. Beez, S. Sarikaya-Seiwert, H.-J. Steiger, D. Hanggi, "Fluorescence-guided surgery with 5-aminolevulinic acid for resection of brain tumors in children-a technical report." Acta neurochirurgica, vol. 156, pp. 597-604, 2014.   DOI
8 M. Hefti, H. Maximilian Mehdorn, I. Albert, L. Dorner, "Fluorescence- guided surgery for malignant glioma: a review on aminolevulinic acid induced protoporphyrin IX photodynamic diagnostic in brain tumors." Current Medical Imaging Reviews, vol. 6, pp. 254-258, 2010.   DOI
9 G. Klein, R. Baumgartner, R. Flower, "An image processing approach to characterizing choroidal blood flow." Investigative ophthalmology & visual science, vol. 31, pp. 629-637, 1990.
10 G. Themelis, J. S. Yoo, K.-S. Soh, R. Schulz, V. Ntziachristos, "Real-time intraoperative fluorescence imaging system using light-absorption correction." Journal of biomedical optics, vol. 14, pp. 064012-064012-064019, 2009.   DOI
11 B. Ganeshan, K. A. Miles, R. C. Young, C. R. Chatwin, "In search of biologic correlates for liver texture on portal-phase CT." Academic radiology, vol. 14, pp. 1058-1068, 2007.   DOI
12 C. B. Jeong, K. G. Kim, T. S. Kim, S. K. Kim, "Image Fusion of Lymphoscintigraphy and Real images for Sentinel Lymph Node Biopsy in Breast Cancer Patients." Journal of Biomedical Engineering Research, vol. 31, no. 2, pp. 114-122, 2010.
13 J. T. Alander, I. Kaartinen, A. Laakso, T. Patila, T. Spillmann, V. V. Tuchin, M. Venermo, P. Valisuo, "A review of indocyanine green fluorescent imaging in surgery." Journal of Biomedical Imaging, vol. 2012, pp. 7, 2012.
14 W. Stummer, U. Pichlmeier, T. Meinel, O. D. Wiestler, F. Zanella, H.-J. Reulen, "Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial." The lancet oncology, vol 7, pp. 392-401 (2006).   DOI
15 F. Ricci, F. Missiroli, L. Cerulli, "Indocyanine green dyeenhanced micropulsed diode laser: a novel approach to subthreshold RPE treatment in a case of central serous chorioretinopathy." European journal of ophthalmology, vol. 14, pp. 74-82, 2003.
16 M. V. Marshall, J. C. Rasmussen, I.-C. Tan, M. B. Aldrich, K. E. Adams, X. Wang, C. E. Fife, E. A. Maus, L. A. Smith, E. M. Sevick-Muraca, "Near-infrared fluorescence imaging in humans with indocyanine green: a review and update." Open surgical oncology journal (Online), vol. 2, pp. 12, 2010.   DOI
17 G. Themelis, J. S. Yoo, V. Ntziachristos, "Multispectral imaging using multiple-bandpass filters." Optics letters, vol. 33, pp. 1023-1025, 2008.   DOI
18 Y. Kondo, Y. Murayama, H. Konishi, R. Morimura, S. Komatsu, A. Shiozaki, Y. Kuriu, H. Ikoma, T. Kubota, M. Nakanishi, "Fluorescent detection of peritoneal metastasis in human colorectal cancer using 5-aminolevulinic acid." International journal of oncology, vol. 45, pp. 41-46, 2014.   DOI