Browse > Article
http://dx.doi.org/10.9718/JBER.2009.30.6.461

Chemical Shift Artifact Correction in MREIT  

Minhas, Atul S. (College of Electronics and Information, Kyung Hee University)
Kim, Young-Tae (College of Electronics and Information, Kyung Hee University)
Jeong, Woo-Chul (College of Electronics and Information, Kyung Hee University)
Kim, Hyung-Joong (College of Electronics and Information, Kyung Hee University)
Lee, Soo-Yeol (College of Electronics and Information, Kyung Hee University)
Woo, Eung-Je (College of Electronics and Information, Kyung Hee University)
Publication Information
Journal of Biomedical Engineering Research / v.30, no.6, 2009 , pp. 461-468 More about this Journal
Abstract
Magnetic resonance electrical impedance tomography (MREIT) enables us to perform high-resolution conductivity imaging of an electrically conducting object. Injecting low-frequency current through a pair of surface electrodes, we measure an induced magnetic flux density using an MRI scanner and this requires a sophisticated MR phase imaging method. Applying a conductivity image reconstruction algorithm to measured magnetic flux density data subject to multiple injection currents, we can produce multi-slice cross-sectional conductivity images. When there exists a local region of fat, the well-known chemical shift phenomenon produces misalignments of pixels in MR images. This may result in artifacts in magnetic flux density image and consequently in conductivity image. In this paper, we investigate chemical shift artifact correction in MREIT based on the well-known three-point Dixon technique. The major difference is in the fact that we must focus on the phase image in MREIT. Using three Dixon data sets, we explain how to calculate a magnetic flux density image without chemical shift artifact. We test the correction method through imaging experiments of a cheese phantom and postmortem canine head. Experimental results clearly show that the method effectively eliminates artifacts related with the chemical shift phenomenon in a reconstructed conductivity image.
Keywords
magnetic resonance electrical impedance tomography; magnetic flux density; chemical shift artifact; Dixon technique; conductivity image;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 J. Ma, S.K. Singh, A.J. Kumar, N.E. Leeds, and L.D. Broemeling, "Method of efficient fast spin-echo Dixon imaging", Mag. Res. Med., vol. 48, pp. 1021-1027, 2002   DOI   ScienceOn
2 A.R. Pineda, S.B. Reeder, Z. Wen, and N.J. Pelc"Cramaer-Rao bounds for three-point decomposition of water and fat", Mag. Res. Med., vol. 54, pp. 625-635, 2005   DOI   ScienceOn
3 C. Park, B.I. Lee, O. Kwon, and E.J. Woo, "Measurement of induced magnetic flux density using injection current nonlinear encoding (ICNE) in MREIT", Physiol. Meas., vol. 28, pp. 117-127, 2007   DOI   ScienceOn
4 H.J. Kim, B.I. Lee, Y. Cho, Y.T. Kim, B.T. Kang, H.M. Park, S.Y. Lee, J.K. Seo, and E.J. Woo, "Conductivity imaging of canine brain using a 3 T MREIT system: postmortem experiments", Physiol. Meas., vol. 28, pp. 1341-1353, 2007   DOI   ScienceOn
5 R. Sadleir, S. Grant, S.U. Zhang, B."Noise analysis in magnetic resonance electrical impedance tomography at 3 and 11 T field strengths", Physiol. Meas., vol. 26, pp. 875-884, 2005   DOI   ScienceOn
6 N. Zhang, Electrical Impedance Tomography based on Current Density Imaging, Toronto, Canada: MS Thesis, Dept. of Elec. Eng, 1992
7 E.J. Woo, S.Y. Lee, and C.W. Mun, "Impedance tomography using internal current density distribution measured by nuclear magnetic resonance", SPIE, vol. 2299, pp. 377-385, 1994   DOI
8 J. Ma, "Dixon techniques for water and fat imaging", Mag. Res. Med., vol. 28, pp. 543-558, 2008
9 C.C. Lodes, J.P. Felmlee, R.L. Ehman, C.M. Sehgal, J.F. Greenleaf, G.H. Glover, and J.E. Gray, "Proton MR chemical shift imaging using double and triple phase contrast acquisition methods", J. Comp. Ass. Tomo., vol. 13, no. 5, pp. 855-861, 1989   DOI   ScienceOn
10 G. H. Glover and E. Schneider, "Three-point Dixon technique for true water/fat decomposition with inhomogeneity correction", Mag. Res. Med., vol. 18, pp. 371-383, 1991   DOI   ScienceOn
11 E.M. Haacke, R.W. Brown, M.R. Thompson, and R. Venkatesan, Magnetic Resonance Imaging: Physical Principles and Sequence Design, John Wiley and Sons Inc., 1999
12 P.A. Hardy, R. S. Hinks, and J. A. Tkach, "Separation of fat and water in fast spin-echo MR imaging with the three-point Dixon technique", J. Mag. Reson. Imaging, vol. 5, pp. 181-185, 1995   DOI   ScienceOn
13 Q.S. Xiang and L. An, "Water-fat imaging with direct phase encoding" J. Mag. Reson. Imaging, vol. 7, pp. 1002-1015, 1997   DOI   ScienceOn
14 M.J. Hamamura, O. Nalcioglu, and L.T. Muftuler, "Correction of chemical shift artifact in magnetic resonance electrical impedance tomography", Proc. Intl. Soc. Mag. Reson. Med. Conf., Honolulu, Hawai, USA, 17, pp. 4658, April 18-24, 2009
15 S.H. Oh, B.I. Lee, E.J. Woo, S.Y. Lee, M.H. Cho, O. Kwon, and J.K. Seo, "Conductivity and current density image reconstruction using harmonic Bz algorithm in magnetic resonance electrical impedance tomography", Phys. Med. Biol., vol. 48, pp. 3101-3116, 2003   DOI   ScienceOn
16 E.J. Woo and J.K. Seo, "Magnetic resonance electrical impedance tomography (MREIT) for high-resolution conductivity imaging", Physiol. Meas., vol. 29, pp. R1-R26, 2008   DOI   ScienceOn
17 G.C. Scott, M.L.G. Joy, R.L. Armstrong, and R.M. Henkelman, "Measurement of nonuniform current density by magnetic resonance", IEEE Trans. Med. Imag., vol. 10, pp. 362-374, 1991   DOI   ScienceOn
18 W. H. Dixon, "Simple proton spectroscopic imaging", Radiology, vol. 153, pp. 189-194, 1984   ScienceOn
19 K. Jeon, H.J. Kim, C-O Lee, E.J. Woo, and J.K. Seo, "CoReHA: conductivity reconstructor using harmonic algorithms for magnetic resonance electrical impedance tomography (MREIT)", J. Biomed. Eng. Res., 2009
20 O. Birgul and Y. Z. Ider, "Use of the magnetic field generated by the internal distribution of injected currents for electrical impedance tomography", Proc. IXth Int. Conf. Elec. Bio-Impedance Heidelberg Germany, pp. 418-419, 1995
21 A.S. Minhas, H.J. Kim, Y.T. Kim, W.C. Jeong, T.H. Lee, E.J. Woo, and S.Y. Lee, “Chemical shift artifact correction in MREIT using 3-point Dixon technique”, Proc. 10th Conf. EIT (Manchester, UK), June 16-19, 2009
22 G.C. Scott, M.L.G. Joy, R.L. Armstrong, and R.M. Henkelman, "Sensitivity of magnetic-resonance current density imaging", J. Mag. Res., vol. 97, pp. 235-254, 1992
23 B.D. Coombs, J. Szumowski, and W. Coshow, "Two-point Dixon technique for water-fat signal decomposition with inhomogeneity correction", Mag. Res. Med., vol. 38, pp. 884-889, 1997   DOI   ScienceOn
24 J.K. Seo, S.W. Kim, S. Kim, J. J. Liu, E.J. Woo, K. Jeon, and C-O Lee, "Local harmonic Bz algorithm with domain decomposition in MREIT: computer simulation study", IEEE Trans. Med. Imag., vol. 27 (12), pp. 1754-1761, 2008   DOI   ScienceOn
25 S.B. Reeder, Z. Wen, H. Yu, A.R. Pineda, G.E. Gold, M. Markl, and N.J. Pelc, "Multi-coil Dixon chemical species separation with an iterative least-squares estimation method", Mag. Res. Med., vol. 51, pp. 35-45, 2004   DOI   ScienceOn
26 J.K. Seo, J.R. Yoon, E.J. Woo, and O. Kwon, "Reconstruction of conductivity and current density images using only one component of magnetic field measurements", IEEE Trans. Biomed. Eng., vol. 50, pp. 1121-1124, 2003   DOI   ScienceOn