Browse > Article
http://dx.doi.org/10.9718/JBER.2009.30.4.279

CoReHA: conductivity reconstructor using harmonic algorithms for magnetic resonance electrical impedance tomography (MREIT)  

Jeon, Ki-Wan (Department of Mathematical Sciences, KAIST)
Lee, Chang-Ock (Department of Mathematical Sciences, KAIST)
Kim, Hyung-Joong (College of Electronics and Information, Kyung Hee University)
Woo, Eung-Je (College of Electronics and Information, Kyung Hee University)
Seo, Jin-Keun (Department of Mathematics, Yonsei University)
Publication Information
Journal of Biomedical Engineering Research / v.30, no.4, 2009 , pp. 279-287 More about this Journal
Abstract
Magnetic resonance electrical impedance tomography (MREIT) is a new medical imaging modality providing cross-sectional images of a conductivity distribution inside an electrically conducting object. MREIT has rapidly progressed in its theory, algorithm and experimental technique and now reached the stage of in vivo animal and human experiments. Conductivity image reconstructions in MREIT require various steps of carefully implemented numerical computations. To facilitate MREIT research, there is a pressing need for an MREIT software package with an efficient user interface. In this paper, we present an example of such a software, called CoReHA which stands for conductivity reconstructor using harmonic algorithms. It offers various computational tools including preprocessing of MREIT data, identification of boundary geometry, electrode modeling, meshing and implementation of the finite element method. Conductivity image reconstruction methods based on the harmonic $B_z$ algorithm are used to produce cross-sectional conductivity images. After summarizing basics of MREIT theory and experimental method, we describe technical details of each data processing task for conductivity image reconstructions. We pay attention to pitfalls and cautions in their numerical implementations. The presented software will be useful to researchers in the field of MREIT for simulation as well as experimental studies.
Keywords
magnetic resonance electrical impedance tomography; conductivity image; conductivity reconstructor using harmonic algorithms;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 S.H. Oh, B.I. Lee, E.J. Woo, S.Y. Lee, M.H. Cho, O. Kwon, and J.K. Seo, 'Conductivity and current density image reconstruction using harmonic algorithm in magnetic resonance electrical impedance tomography', Phys. Med. Biol., vol. 48, pp. 3101-3116, 2003   DOI   ScienceOn
2 T. Chan, and L. Vese, 'Active contours without edges', IEEE Trans. Imag. Proc., vol. 10, pp. 266-277, 2001   DOI   ScienceOn
3 O. Birgul, and Y.Z. Ider, 'Use of the magnetic field generated by the internal distribution of injected currents for electrical impedance tomography', Proc. IXth Int. Conf. Elec. Bio-Impedance, Heidelberg, Germany, pp. 418-419, 1995
4 Y.Z. Ider, and O. Birgul, 'Use of the magnetic field generated by the internal distribution of injected currents for electrical impedance tomography (MR-EIT)', Elektrik, vol. 6, pp. 215-225, 1998
5 S.H. Park, C.O. Lee, and J Hahn, 'Image segmentation based on the statistical variational formulation using the local region information', DAM Res. Rep. 08-03, KAIST, Korea, 2008
6 E.J. Woo, J.K. Seo, and S.Y. Lee, 'Magnetic resonance electrical impedance tomography (MREIT) in Holder D ed.', Electrical Impedance Tomography: Methods, History and Applications, Bristol, UK: IOP Publishing, 2005
7 E.J. Woo, and J.K. Seo, 'Magnetic resonance electrical impedance tomography (MREIT) for high-resolution conductivity imaging', Physiol. Meas., vol. 29, pp. R1-26, 2008   DOI   ScienceOn
8 B.I. Lee, S.H. Oh, E.J. Woo, S.Y. Lee, M.H. Cho, O. Kwon, J.K. Seo, J.Y. Lee, and W.S. Baek, 'Three-dimensional forward solver and its performance analysis in magnetic resonance electrical impedance tomography (MREIT) using recessed electrodes', Phys. Med. Biol., vol. 48, pp. 1971-1986, 2003   DOI   ScienceOn
9 T.S. Kim, B.I. Lee, C. Park, S.H. Lee, S.H. Tak, J.K. Seo, O. Kwon, and E.J. Woo, 'A Matlab toolbox for magnetic resonance electrical impedance tomography (MREIT): MREIT toolbox', IJBEM, vol. 7, pp. 352-355, 2005
10 H.J. Kim, T.I. Oh, Y.T. Kim, B.I. Lee, E.J. Woo, J.K. Seo, S.Y. Lee, O. Kwon, C. Park, B.T. Kang, and H.M. Park, 'In vivo electrical conductivity imaging of a canine brain using a 3T MREIT system', Physiol. Meas., vol. 29, pp. 1145-1155, 2008   DOI   ScienceOn
11 E.J. Woo, S.Y. Lee, and C.W. Mun, 'Impedance tomography using internal current density distribution measured by nuclear magnetic resonance', SPIE, vol. 2299, pp. 377-385, 1994   DOI
12 T.I. Oh, Y. Cho, Y.K. Hwang, S.H. Oh, E.J. Woo, and S.Y. Lee, 'Improved current source design to measure induced magnetic flux density distributions in MREIT', J. Biomed. Eng. Res., vol. 27, pp. 30-37, 2006   과학기술학회마을   ScienceOn
13 N. Zhang, Electrical Impedance Tomography based on Current Density Imaging, Toronto, Canada: MS Thesis, Dept. of Elec. Eng, 1992
14 M. Frigo and, S.G. Johnson, http://www.fftw.org, 2008
15 D.C. Ghiglia, and M.D. Pritt, 'Two-Dimensional Phase Unwrapping: Theory, Algorithms and software', New York, USA: Wiley Interscience, 1998
16 R. Sadleir, S. Grant, S.U. Zhang, B.I. Lee, H.C. Pyo, S.H. Oh, C. Park, E.J. Woo, S.Y. Lee, O. Kwon, and J.K. Seo, 'Noise analysis in MREIT at 3 and 11 Tesla field strength', Physiol. Meas., vol. 26, pp. 875-884, 2005   DOI   ScienceOn
17 J.K. Seo, J.R. Yoon, E.J. Woo, and O. Kwon, 'Reconstruction of conductivity and current density images using only one component of magnetic field measurements', IEEE Trans. Biomed. Eng., vol. 50, pp. 1121-1124, 2003   DOI   ScienceOn
18 O. Kwon, E.J. Woo, J.R. Yoon, and J.K. Seo, 'Magnetic resonance electrical impedance tomography (MREIT): simulation study of J-substitution algorithm', IEEE Trans. Biomed. Eng., vol. 49, pp. 160-167, 2002   DOI   ScienceOn
19 X. Xie, and M. Mirmehdi, 'RAGS: region-aided geometric snake', IEEE Trans. Imag. Proc., vol. 13, pp. 640-652, 2004   DOI   ScienceOn
20 G.C. Scott, M.L.G. Joy, R.L. Armstrong, and R.M. Hankelman, 'Sensitivity of magnetic resonance current density imaging', J. Magn. Reson., vol. 97, pp. 235-254, 1992
21 V. Caselles, R. Kimmel, and G. Sapiro, 'Geodesic active contours', Int. J. Comput. Vis., vol 22, pp. 61-79, 1997   DOI   ScienceOn
22 B.I. Lee, S.H. Lee, T.S. Kim, O. Kwon, E.J. Woo, and J.K. Seo, 'Harmonic decomposition in PDE-based denoising technique for magnetic resonance electrical impedance tomography', IEEE Trans. Biomed. Eng., vol. 52, pp. 1912-1920, 2005   DOI   ScienceOn
23 OpenGL, http://www.opengl.org, 2008
24 J.R. Shewchuk, 'Triangle: a two-dimensional quality mesh generator and Delaunay triangulator', http://www.cs.cmu.edu/$\sim$quake/triangle.html, 2005
25 S.H. Lee, J.K. Seo, C. Park, B.I. Lee, E.J. Woo, S.Y. Lee, O. Kwon, and J. Hahn, 'Conductivity image reconstruction from defective data in MREIT: numerical simulation and animal experiment', IEEE Trans. Med. Imag., vol. 25, pp. 168-176, 2006   DOI   ScienceOn
26 H.J. Kim, B.I. Lee, Y. Cho, Y.T. Kim, B.T. Kang, H.M. Park, S.Y. Lee, J.K. Seo, and E.J. Woo, 'Conductivity imaging of canine brain using a 3 T MREIT system: postmortem experiments', Physiol. Meas., vol. 28, pp. 1341-1353, 2007   DOI   ScienceOn
27 J.K. Seo, S.W. Kim, S. Kim, J.J. Liu, E.J. Woo, K. Jeon, and C.O. Lee, 'Local harmonic $B_{z}$ algorithm with domain decomposition in MREIT: computer simulation study', IEEE Trans. Med. Imag., vol. 27, pp. 1754-1761, 2008   DOI   ScienceOn
28 C.O. Lee, S.H. Park, and J Hahn, 'Method for image segmentation using statistically reinstating force and multi-resolution', Applied for Korea patent, 2007
29 O. Kwon, H.C. Pyo, J.K. Seo, and E.J. Woo, 'Mathematical framework for $B_{z}$ -based MREIT model in electrical impedance imaging', Comp. Math. Appl., vol. 51, pp. 817-828, 2006   DOI   ScienceOn