Browse > Article
http://dx.doi.org/10.9718/JBER.2006.27.3.110

MRI Content-Adaptive Finite Element Mesh Generation Toolbox  

Lee W.H. (Functional and Metabolic Imaging Center Department of Biomedical Engineering, Kyung Hee University)
Kim T.S. (Functional and Metabolic Imaging Center Department of Biomedical Engineering, Kyung Hee University)
Cho M.H. (Functional and Metabolic Imaging Center Department of Biomedical Engineering, Kyung Hee University)
Lee S.Y. (Functional and Metabolic Imaging Center Department of Biomedical Engineering, Kyung Hee University)
Publication Information
Journal of Biomedical Engineering Research / v.27, no.3, 2006 , pp. 110-116 More about this Journal
Abstract
Finite element method (FEM) provides several advantages over other numerical methods such as boundary element method, since it allows truly volumetric analysis and incorporation of realistic electrical conductivity values. Finite element mesh generation is the first requirement in such in FEM to represent the volumetric domain of interest with numerous finite elements accurately. However, conventional mesh generators and approaches offered by commercial packages do not generate meshes that are content-adaptive to the contents of given images. In this paper, we present software that has been implemented to generate content-adaptive finite element meshes (cMESHes) based on the contents of MR images. The software offers various computational tools for cMESH generation from multi-slice MR images. The software named as the Content-adaptive FE Mesh Generation Toolbox runs under the commercially available technical computation software called Matlab. The major routines in the toolbox include anisotropic filtering of MR images, feature map generation, content-adaptive node generation, Delaunay tessellation, and MRI segmentation for the head conductivity modeling. The presented tools should be useful to researchers who wish to generate efficient mesh models from a set of MR images. The toolbox is available upon request made to the Functional and Metabolic Imaging Center or Bio-imaging Laboratory at Kyung Hee University in Korea.
Keywords
finite element method; MRI; content-adaptive mesh generation toolbox;
Citations & Related Records
연도 인용수 순위
  • Reference
1 W. H. Lee, T.-S. Kim, M. H. Cho, and S. Y. Lee, 'Content-adaptive finite element mesh generation of 3-D complex MR volumes for bioelectromagnetic problems,' in Proc. 27th Ann. Int. Conf. IEEE EMBS, Shanghai, China, Sept. 2005
2 http://bioimage.khu.ac.kr/
3 U. Hartmann, and F. Kruggel, 'A fast algorithm for generating large tetrahedral 3D finite element meshes from magnetic resonance tomograms,' in Proc. IEEE Biomed. Image Analysis, St. Barbara, 1998, pp. 184-192
4 Y. Yang, M. N. Wernick, and J. G. Brankov, 'A fast approach for accurate content-adaptive mesh generation,' IEEE Trans. Image Processing, voL 12, no. 8, pp. 866-881, 2003   DOI   ScienceOn
5 I. Katsavounidis and C.-C. J. Kuo, 'A multiscale error diffusion technique for digital halftoning,' IEEE Trans. Image Processing, vol. 6, no. 3, 483-490, 1997   DOI   ScienceOn
6 http://www.mathworks.com/
7 http://www.gnu.org/
8 K. Z. Abd-Elmoniem, A.-B. Youssef, and Y. M. Kadah, 'Real-time speckle reduction and coherence enhancement in ultrasound imaging via nonlinear anisotropic diffusion,' IEEE Trans. Biomed. Engi., vol. 49, no. 9, pp. 997-1014, 2002   DOI   ScienceOn
9 http://brainsuite.usc.edu/
10 D. Tschumperle and R. Deriche, 'Diffusion PDEs on vector-valued images,' IEEE Sig. Proc. Mag., Sep., pp. 16-25, 2002   DOI   ScienceOn
11 T.-S. Kim, Y. Zhou, S. Kim, and M. Singh, 'EEG distributed source imaging with a realistic finite element head model,' IEEE Trans. Nucl. Sci., vol. 49, no. 3, pp. 745-752, 2002   DOI   ScienceOn
12 M. Ziolkowski, and H. Brauer, 'Methods of mesh generation for biomagnetic problems,' IEEE Trans. Magnetics, vol. 32, no. 3, pp. 1345-1348, 1996   DOI   ScienceOn
13 W. H. Lee, J. S. Moon, S. Y. Lee, and T.-S. Kim, 'Numerical evaluation of MRI content-adaptive finite element models via EEG forward solutions,' in Proc. World Congress on Medical Physics and Biomedical Engineering, Seoul, Korea, 2006
14 E. Molinari, M.Fato, G. De Leo, D. Riccardo, and F. Beltrame, 'Simulation of the biomechanical behavior of the skin in virtual surgical applications by finite element methods,' IEEE Trans. Biomed. Engi., 2005
15 http://www.cs.comell.edu/Info/People/vavasis/qmghome.html/
16 D. F. Watson, 'Computing the n-dimensional Delaunay tessellation with application to Voronoi polytypes', The Comp. Jour., vol. 24, no.2, pp. 167-172, 1981
17 B. Dogdas, D. W. Shattuck, and R. M. Leahy, 'Segmentation of skull and scalp in 3-D human MRI using mathematical morphology,' Human Brain Mapping, vol.26, pp.273-285, 2005   DOI   ScienceOn
18 http://www.sciutah.edu/
19 J. Weickert, 'A review of nonlinear diffusion filtering,' Scale-Space Theory in Computer Vision, Lecture Notes in Computer Science, vol. 1252, Springer, Berlin, pp. 3-28, 1997
20 http://www.nenastran.com/
21 S. Kim, T.-S. Kim, Y. Zhou, and M. Singh, 'Influence of conductivity tensors on the scalp electrical potential: study with 2-D finite element models,' IEEE Trans. Nucl. Sci., vol. 50, no. 1, pp. 133-138, 2003   DOI   ScienceOn
22 N. GenerandC. E. Acar, 'Sensitivity of EEG and MEG measurements to tissue conductivity,' Phys. Med Biol., vol. 49, pp. 701-717, 2004   DOI   ScienceOn
23 R. Floyd and L. Steinberg, 'An adaptive algorithm for spatial gray scale,' in Proc. Int. Symp. Digest of Tech. Papers, pp. 36-37, 1975
24 T.-S. Kim, S. Kim, D. Huang, and M. Singh, 'DT-MRl Regularization using 3D nonlinear gradient vector flow anisotropic diffusion,' in Proc. Int. Conf. IEEE Eng. Med. Biol., 2004, pp. 1880-1883
25 C. H. Wolters, M. Kuhn, A. Anwander, and S. Reitzinger, 'Fast anisotropic high resolution finite element head modeling in EEG/MEG source localization,' in Proc. Int. Conf. Biomag., Aug. 2002
26 http://web.kyunghee.ac.kr/~fmic/
27 http://www.comsol.com/