Browse > Article
http://dx.doi.org/10.9718/JBER.2006.27.1.030

Improved Current Source Design to Measure Induced Magnetic Flux Density Distributions in MREIT  

Oh Tong-In (Department of Biomedical Engineering, College of Electronics and Information, Kyung Hee University)
Cho Young (Department of Biomedical Engineering, College of Electronics and Information, Kyung Hee University)
Hwang Yeon-Kyung (Department of Biomedical Engineering, College of Electronics and Information, Kyung Hee University)
Oh Suk-Hoon (Department of Biomedical Engineering, College of Electronics and Information, Kyung Hee University)
Woo Eung-Je (Department of Biomedical Engineering, College of Electronics and Information, Kyung Hee University)
Lee Soo-Yeol (Department of Biomedical Engineering, College of Electronics and Information, Kyung Hee University)
Publication Information
Journal of Biomedical Engineering Research / v.27, no.1, 2006 , pp. 30-37 More about this Journal
Abstract
Injecting currents into an electrically conducting subject, we may measure the induced magnetic flux density distributions using an MRI scanner. The measured data are utilized to reconstruct cross-sectional images of internal conductivity and current density distributions in Magnetic Resonance Electrical Impedance Tomography (MREIT). Injection currents are usually provided in a form of mono-polar or bi-polar pulses synchronized with an MR pulse sequence. Given an MRI scanner performing the MR phase imaging to extract the induced magnetic flux density data, the current source becomes one of the key parts determining the signal-to-noise ratio (SNR) of the measured data. Since this SNR is crucial in determining the quality of reconstructed MREIT images, special care must be given in the design and implementation of the current source. This paper describes a current source design for MREIT with features including interleaved current injection, arbitrary current waveform, electrode switching to discharge any stored charge from previous current injections, optical isolation from an MR spectrometer and PC, precise current injection timing control synchronized with any MR pulse sequence, and versatile PC control program. The performance of the current source was verified using a 3T MRI scanner and saline phantoms.
Keywords
MREIT; current source; magnetic flux density;
Citations & Related Records
연도 인용수 순위
  • Reference
1 N. Zhang, Electrical Impedance Tomography based on Current Density Imaging, MS Thesis, Dept. of Elec. Eng., Univ. of Toronto, Toronto, Canada, 1992
2 Y. Z. Ider and O. Birgul, 'Use of the magnetic field generated by the internal distribution of injected currents for Electrical Impedance Tomography (MR-EIT)', Elektrik, Vol. 6, pp.215-225, 1998
3 H. S. Khang, B. I. Lee, S. H. Oh, E. J. Woo, S. Y. Lee, M. H. Cho, O. Kwon,J. R. Yoon, and J. K. Seo, 'J-substitution algorithm in magnetic resonance electrical impedance tomography (MREIT): phantom experiments for static resistivity images', IEEE Trans. Med. Imag., Vol. 21, pp.695-702, 2002   DOI   ScienceOn
4 J. K. Seo, J. R. Yoon, E. J. Woo, and O. Kwon, 'Reconstruction of conductivity and current density images using only one component of magnetic field measurements', IEEE Trans. Biomed. Eng., Vol. 50, pp.1121-1124, 2003   DOI   ScienceOn
5 C. Park, O. Kwon, E. J. Woo, and J. K. Seo, 'Electrical conductivity imaging using gradient $B_{z}$ decomposition algorithm in magnetic resonance electrical impedance tomography (MREIT)', IEEE Trans. Med. Imag., Vol. 23, pp.388-394, 2004   DOI   ScienceOn
6 O. Kwon, C. Park, E. J. Park, J. K. Seo, and E. J. Woo, 'Electrical conductivity imaging using a variational method in $B_{z}$-based MREIT', Inv. Prob., Vol. 21, pp.969-980, 2005   DOI   ScienceOn
7 S. H. Oh, B. I. Lee, E. J. Woo, S. Y. Lee, T. S. Kim, O. Kwon, and J. K. Seo, 'Electrical conductivity images of biological tissue phantoms in MREIT', Physiol. Meas., Vol. 26, pp.S279-288, 2005   DOI   ScienceOn
8 G. C. Scott, M. L. G. Joy, R. L. Armstrong, and R. M. Henkelman, 'Measurement of nonuniform current density by magnetic resonance',IEEE Trans. Med. Imag., Vol. 10, pp.362-374, 1991   DOI   ScienceOn
9 Y. Z. Ider and S. Onart, 'Algebraic reconstruction for 3D MR-EIT using one component ofmagnetic flux density'.Physiol. Meas., Vol. 25, pp.281-294, 2004   DOI   ScienceOn
10 Y. Z. Ider, S. Onart, and W. R. B. Lionheart, 'Uniqueness and reconstruction in magnetic resonance-electrical impedance tomography (MR-EIT),' Physiol. Meas., Vol. 24, pp.591-604, 2003   DOI   ScienceOn
11 M. L. Joy, 'MR current density and conductivity imaging: the state of the art', Proc. 26th Ann. Int. Conf. IEEE EMBS, San Francisco, CA, USA, pp.5315-5319, 2004
12 J. P. Reilly, Applied Bioelectricity: From Electrical Stimulation To Electropathology, Springer-Verlag, NY, USA, 1998
13 S. H. Oh, B. I. Lee, T. S. Park, S. Y. Lee, E. J. Woo, M. H. Cho, O. Kwon, and J. K. Seo, 'Magnetic resonance electrical impedance tomography at 3 Tesla field strength', Mag. Reson. Med., Vol. 51, pp.1292-1296, 2004   DOI   ScienceOn
14 S. H. Oh, B. I. Lee, E. J. Woo, S. Y. Lee, M. H. Cho, O. Kwon, and J. K. Seo, 'Conductivity and current density image reconstruction using harmonic $B_z$ algorithm in magnetic resonance electrical impedance tomography,' Phys. Med. BioI., Vol. 48, pp.3101-3116, 2003   DOI   ScienceOn
15 O. Birgul, B. M. Eyuboglu, and Y. Z. Ider, 'Current constrained voltage scaled reconstruction (CCVSR) algorithm for MR-EIT and its performance with different probing current patterns', Phys. Med. BioI., Vol. 48, pp. 653-671,2003   DOI   ScienceOn
16 C. Park, E. J. Park, E. J. Woo, O. Kwon, and J. K. Seo, 'Static conductivity imaging using variational gradient $B_{z}$ algorithm in magnetic resonance electrical impedance tomography', Physiol. Meas., Vol. 25, pp.257-269, 2004   DOI   ScienceOn
17 K. S. Kim, T. I. Oh, S. M. Paek, S. H. Oh, E. J. Woo, S. Y. Lee, and J. Yi, 'Design and performance analysis of current source for 3.0T MREIT system', J. Biomed. Eng. Res., Vol. 25, pp.165-169, 2004   DOI   ScienceOn
18 E. J. Woo, S. Y. Lee, and C. W. Mun, 'Impedance tomography using internal current density distribution measured by nuclear magnetic resonance', SPIE, Vol. 2299, pp.377-385, 1994
19 S. Franco, Design with Operational Amplifiers and Analog Integrated Circuits, McGraw-Hill, NY, USA, 2002
20 B. I. Lee, S. H. Oh, E. J. Woo, S. Y. Lee, M. H. Cho, O. Kwon, J. K. Seo, and W. S. Baek, 'Static resistivity image of a cubic saline phantom in magnetic resonance electrical impedance tomography (MREIT)', Physiol. Meas., Vol. 24, pp.579-589, 2003   DOI   ScienceOn
21 R. Sadleir, S. Grant, S. U. Zhang, B. I. Lee, H. C. Pya, S. H. Oh, C. Park, E. J. Woo, S. Y. Lee, O. Kwon, and J. K. Seo, 'Noise analysis in MREIT at 3 and 11 Tesla field strength', Physiol. Meas., Vol. 26, pp.875-884, 2005   DOI   ScienceOn
22 G. C. Scott, M. L. G. Joy, R. L. Armstrong, and R. M. Hankelman, 'Sensitivity of magnetic resonance current density imaging', J. of Magn. Reson., Vol. 97, pp.235-254, 1992
23 O. Kwon, E. J. Woo, J. R. Yoon, and J. K. Seo, 'Magnetic resonance electrical impedance tomography (MREIT): simulation study of J-substitution algorithm', IEEE Trans. Biomed. Eng., Vol. 48, pp.160-167, 2002