Browse > Article

256-Channel Trans-Admittance Scanner with Lesion Estimation Algorithm for Breast Cancer Detection  

Oh, Tong-In (Department of Biomedical Engineering, Kyung Hee University)
Kim, Kyu-Sik (Department of Biomedical Engineering, Kyung Hee University)
Lee, Jae-Sang (Department of Biomedical Engineering, Kyung Hee University)
Woo, Eung-Je (Department of Biomedical Engineering, Kyung Hee University)
Park, Chun-Jae (Impedance Imaging Research Center, Kyung Hee University)
Publication Information
Journal of Biomedical Engineering Research / v.26, no.4, 2005 , pp. 207-214 More about this Journal
Abstract
Breast cancer detection using electrical impedance techniques is based on numerous experimental findings that cancerous tissues have higher electrical conductivity values than normal tissues. Lately, by taking advantage of the structure of current flows underneath a planar probe of array electrodes, a mathematical formula to find lesions from a measured trans­admittance map has been derived. In order to experimentally validate its mathematical analysis and the suggested lesion estimation algorithm, we developed a 256-channel trans-admittance scanner (TAS) for probing anomalies underneath a planar array of electrodes. In this paper, we describe the design and implementation of the TAS. Its performance together with the lesion estimation algorithm was evaluated using saline phantoms. Further studies are proposed to validate the system on human subjects.
Keywords
TAS (trans-admittance scanner); Scan probe; Lesion estimation algorithm;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. L. Larson-Wiseman, Early Breast Cancer Detection Utilizing Clustered Electrode Arrays in Impedance Imaging, Ph.D. Thesis, RPI, Troy, NY, USA, 1998
2 T. Kao, J. C. Newell, G. J. Saulinier, and D. Isaacson, 'Distinguishability of inhomogeneities using planar electrode arrays and different patterns of applied excitation', Physiol. Meas., Vol. 24, pp. 403-411, 2003   DOI   ScienceOn
3 R. P. Henderson and J. G. Webster, 'An impedance camera for spatially specific measurements of the thorax ', IEEE Trans. Biomed. Eng., Vol. 25, pp. 250-254, 1978   DOI   PUBMED   ScienceOn
4 J. Jossinet and M. Schmitt, 'A review of parameters for the bioelectrical characterization of breast tissue ', Ann. New York Academy of Sci., Vol 873, pp. 30-41, 1999   DOI   PUBMED
5 J. L. Mueller, D. Isaacson, and J. C. Newell, 'A reconstruction algorithm for electrical impedance tomography data collected on rectangular electrode arrays', IEEE Trans. Biomed. Eng., Vol. 46, pp. 1379-1386, 1999   DOI   ScienceOn
6 A. J. Surowiec, S. S. Stuchly, J. R. Barr, and A. Swarup, 'Dielectric properties of breast carcinoma and the surrounding tissues', IEEE Trans. Biomed. Eng., Vol 35, pp. 257-263, 1988   DOI   ScienceOn
7 J. K. Seo, O. Kwon, H. Ammari, and E. J. Woo, 'Mathematical framework and anomaly estimation algorithm for breast cancer detection: electrical impedance technique using TS2000 configuration', IEEE Trans. Biomed. Eng., Vol. 51, pp. 1898-1906, 2004   DOI   ScienceOn
8 V. Cherepenin, A. Karpov, A. Korjenevsky, V. Kornienko, A. Mazaletskaya, D. Mazourov, and J. Meister, 'A 3D electrical impedance tomography (EIT) system for breast cancer detection', Physiol. Meas., Vol. 22, pp. 9-18, 2001   DOI   ScienceOn
9 V. Cherepenin, A. Karpov, A. Korjenevsky, V. Kornienko, Y. Kultiasov, M. Ochapkin, O. Trochanova, and J. Meister, 'Three-dimensional EIT imaging of breast tissues: system design and clinical testing', IEEE Trans. Med. Imag., Vol. 21,pp.662-667, 2002   DOI   ScienceOn
10 J. E. Silva, J. P. Marques, and J. Jossinet, 'Classification of breast tissue by electrical impedance spectroscopy', Med. Biol. Eng. Comput., Vol. 38, pp. 26-30, 2000   DOI   ScienceOn
11 H. Ammari, O. Kwon, J. K. Seo, E. J. Woo, 'T-Scan electrical impedance imaging system for anomaly detection', SIAM J. Appl. Math., Vol. 65, pp. 252-266, 2004   DOI   ScienceOn
12 J. W. Lee, T. I. Oh, J. S. Lee, E. J. Woo, J. K. Seo, and O. Kwon, 'Development of trans-admittance scanner (TAS) for breast cancer detection', J. Biomed. Eng. Res., Vol. 25, pp. 335-342, 2004
13 S. Franco, Design with Operational Amplifiers and Analog Integrated Circuits, 3rd. ed., McGraw-Hill, NY, USA, 2002
14 J. S. Lee, T. I. Oh, S. M. Baek, K. S. Kim, M. H. Lee, S. P. Cho, and E. J. Woo, 'Design and implementation of FPGA for improvement of SNR in digital electrical impedance tomography system', Proc. 31st Ann. Conf. KOSOMBE, Vol. 31, pp. 333-336, 2004
15 T. E. Kerner, K. D. Paulsen, A. Hartov, S. K. Soho, and S. P. Poplack, 'Electrical impedance spectroscopy of the breast: clinical imaging results in 26 subjects ', IEEE Trans. Med. Imag., Vol. 21, pp. 638-645, 2002   DOI   ScienceOn
16 M. Assenheimer, O. Laver-Moskovitz, D. Malonek, D. Manor, U. Nahliel, R. Nitzan, and A. Saad, 'The T-Scan technology: electrical impedance as a diagnostic tool for breast cancer detection' , Physiol. Meas., Vol. 22, pp. 1-8, 2001   DOI   PUBMED   ScienceOn
17 R. D. Cook, G. J. Saulnier, D. G. Gisser, J. G. Goble, J. C. Newell, and D. Isaacson, 'ACT3: a high-speed, high-precision electrical impedance tomography', IEEE Trans. Biomed. Eng., Vol. 41, pp. 713-722, 1994   DOI   ScienceOn
18 B. Scholz, 'Towards virtual electrical breast biopsy: space-frequency MUSIC for trans-admittance data' , IEEE Trans. Med. Imag., Vol. 21, pp. 588-595, 2002   DOI   PUBMED   ScienceOn