Browse > Article

3-D High Resolution Ultrasonic Transmission Tomography and Soft Tissue Differentiation  

Kim Tae-Seong (Dept. of Biomedical Engineering, Kyung Hee University)
Publication Information
Journal of Biomedical Engineering Research / v.26, no.1, 2005 , pp. 55-63 More about this Journal
Abstract
A novel imaging system for High-resolution Ultrasonic Transmission Tomography (HUTT) and soft tissue differentiation methodology for the HUTT system are presented. The critical innovation of the HUTT system includes the use of sub-millimeter transducer elements for both transmitter and receiver arrays and multi-band analysis of the first-arrival pulse. The first-arrival pulse is detected and extracted from the received signal (i.e., snippet) at each azimuthal and angular location of a mechanical tomographic scanner in transmission mode. Each extracted snippet is processed to yield a multi-spectral vector of attenuation values at multiple frequency bands. These vectors form a 3-D sinogram representing a multi-spectral augmentation of the conventional 2-D sinogram. A filtered backprojection algorithm is used to reconstruct a stack of multi-spectral images for each 2-D tomographic slice that allow tissue characterization. A novel methodology for soft tissue differentiation using spectral target detection is presented. The representative 2-D and 3-D HUTT images formed at various frequency bands demonstrate the high-resolution capability of the system. It is shown that spherical objects with diameter down to 0.3㎜ can be detected. In addition, the results of soft tissue differentiation and characterization demonstrate the feasibility of quantitative soft tissue analysis for possible detection of lesions or cancerous tissue.
Keywords
Ultrasonic transmission tomography; Multi-spectral imaging; Soft tissue differentiation; Spectral target detection;
Citations & Related Records
연도 인용수 순위
  • Reference
1 R. Stotzka, J. Wurfel, and T. O. Muller, 'Medical Imaging by Ultrasound-Computer Tomography', Proc. SPIE Medical Imaging, pp. 132, San Diego, 2002
2 J. F. Greenleaf, S. A. Johnson, R. C. Bahn, B. Rajagopalan, and S. Kenue, Introduction to computed ultrasound tomography, Computer Aided Tomography and Ultrasonics in Medicine, pp. 125-136, 1979
3 J. S. Schreiman, J. J. Gisvold, J. F. Greenleaf, and R. C. Bahn, 'Ultrasound Transmission Computed Tomography of the Breast', Radiology, 150, pp. 523-530, 1984   DOI   PUBMED
4 Decomposition and Compounding of Ultrasound Medical Images with Wavelet Packets', IEEE Trans. Med. Imaging, Vol. 20, No.8, pp. 764-771, 2001   DOI   ScienceOn
5 C.-I. Chang, D. C. Heinz, 'Constrained Subpixel Target Detection for Remotely Sensed Imagery', IEEE Trans. Geosci. Remote Sensing, Vol. 38, No.3, pp. 1144-1159, 2000   DOI   ScienceOn
6 A. C. Kak, and K. A. Dines, 'Signal Processing of Broadband Pulsed Ultrasound: Measurement of Attenuation of Soft Biological Tissues', IEEE Trans. Biomed. Engi., Vol. 25, No.4, pp. 321-344, 1978   DOI   ScienceOn
7 J. F. Greenleaf, S. A. Johnson, S. Lee, G. Herman, and E. Wood, in Acoustic Holography, N. Booth, Ed., pp. 591-603, Plenum, New York, 1974
8 L. Landini and L. Verrazzani, 'Spectral characterization of tissues microstructure by ultrasounds: a stochastic approach', IEEE Trans. Ultrason., Ferroelec., Freq Contr., Vol. 37, No.5, pp. 448-456, 1990   DOI   ScienceOn
9 P. L. Carson, C. R. Meyer, A. L. Scherzinger, and T. V. Oughton, 'Breast Imaging in Coronal Planes with Simultaneous Pulse Echo and Transmission Ultrasound', Science, Vol. 214, No.4, pp. 1141-1143, 1981   DOI   PUBMED
10 G. Georgiou, and F. S. Cohen, 'Tissue Characterization Using the Continuous Wavelet Transform', IEEE Trans. Ultrason., Ferroelec., Freq. Contr., Vol. 48, No.2, pp. 355-363, 2001   DOI   ScienceOn
11 G. H. Glover, and J. C. Sharp, 'Reconstruction of Ultrasound Propagation Speed Distributions in Soft Tissue: Time-of-Flight Tomography', IEEE Trans. Sonics Ultrasonics, Vol. 24, No.4, pp. 229-234, 1977
12 T.-S. Kim, R. E. N, Shehada, and V. Z. Marmarelis, 'Nonlinear modeling of ultrasound transmit-receive system using Laguerre-Volterra networks', Proc. SPIE Medical Imaging, Vol. 5035, pp. 62-69, 2003
13 T.-S. Kim, M. Singh, W. Sungkarat, C. Zarow, and H. Chui, 'Automatic Reigstration of Postmortem Brain Slices to MRI Reference Volume', IEEE Trans. Nucl. Sci., Vol. 47, No. 4, pp. 1607-1613, 2000   DOI   ScienceOn
14 S. G. Azevedo, T. L. Moore, R. D. Huber, S. W. Ferguson, R. L. Leach, and S. E. Benson, 'Apparatus for Circular Tomographic Ultrasound', Proc. SPIE Medical Imaging, pp. 131, San Diego, 2002 V.Z. Marmarelis, T.-S. Kim, and R.E.N. Shehada, 'High Resolution Ultrasonic Transmission Tomography', Proc. SPIE Med. Imaging, Vol. 5035, pp. 33-40, 2003
15 P. He, 'Acoustic parameter estimation based on attenuation and dispersion measurements', Proc. IEEE Eng. Med. Biol. Soc., Vol. 20, pp. 775-778, 1998
16 K. A. Wear, 'The Effects of Frequency-Dependent Attenuation and Dispersion on Sound Speed Measurements: Applications in Human Trabecular Bone', IEEE Trans. Ultrason., Ferroelec., Freq. Contr., Vol. 47, No.1, pp. 265-273, 2000   DOI   ScienceOn
17 T.-S. Kim, S. Do, and V. Z. Marmarelis, 'Multi-band tissue differentiation in ultrasonic transmission tomography', Proc. SPIE Medical Imaging, Vol. 5035, pp. 41-48, 2003
18 J. G. Miller, J. R. Klepper, G. H. Brandenburger, L. J. Busse, M. O'Donnell, and J. W. Mimbs, Reconstructive Tomography based on Ultrasonic Attenuation, Computer Aided Tomography and Ultrasonics in Medicine, Raviv et al, (eds.), pp. 151-164, North-Holland Publishing Company, 1979
19 J. F. Greenleaf, and R. C. Bahn, 'Clinical Imaging with Transmissive Ultrasonic Computerized Tomography', IEEE Trans. Biomed. Engi, Vol. 28, No.2, pp. 177-185, 1981   DOI   ScienceOn
20 T.-S. Kim, C. Huang. J. Jeong, D. Shin, M. Singh, and V. Z. Marmarelis, 'Sinoqram. enhancement for ultrasonic transmission tomography using coherence enhancing diffusion', IEEE Int. Symposium on Ultrasonics, 1816-1819, 2003
21 G. N. Ramachandran, and A. V. Lakshminarayanan, 'Three-dimensional reconstruction from radiographs and electron micrographs: applications of convolutions instead of Fourier transforms', Proc. Nat. Acad. Sci. U.S., Vol. 68, No. 9, pp. 2236-2240, 1971
22 M. T. Nguyen, U. Faust, H. Bressmer, and P. Kugel, 'Ultrasound Tomography System Using Transmission and Reflection Mode with Electronic Scanning', IEEE Engi. Med. Bio. Soc., 14, pp. 2142-2143, 1992