Browse > Article
http://dx.doi.org/10.5103/KJSB.2020.30.2.131

Effect of Kinetic Degrees of Freedom on Hierarchical Organization of Multi-element Synergies during Force Production and Releasing Tasks  

Kim, Kitae (Department of Physical Education, Seoul National University)
Song, Junkyung (Department of Physical Education, Seoul National University)
Park, Jaebum (Department of Physical Education, Seoul National University)
Publication Information
Korean Journal of Applied Biomechanics / v.30, no.2, 2020 , pp. 131-144 More about this Journal
Abstract
Objective: The purpose of this study was to examine the effect of degrees of freedom on the multi-synergies in two hierarchies of human hand system during force production and releasing tasks. Method: In this study, the constrained movements of the aiming and releasing actions using both hands and fingers during archery-like shooting were implemented as experimental tasks. The participants produced a pulling force holding the customized frame (mimicking an archery bow, with a set of force transducers) and kept it consistently for about 5 seconds, and released fingers as quickly as possible in a self-paced manner within the next 5 seconds. An analytical method based on the uncontrolled manifold hypothesis was used to quantify the stability index (synergy index) in two hierarchies including two hands (upper hierarchy) and individual fingers (lower hierarchy). Results: The results confirmed that the positive synergy pattern showed simultaneously at the upper and lower hierarchies, and the kinetic degrees of freedom were associated with the increment of hierarchical synergy indices and the performance indices. Also, the synergy indices of both hierarchies showed significant positive correlations with the performance accuracy during the task. Conclusion: The results of this study suggest that the human control system actively uses extra degrees of freedom to stabilize task performance variables. Further increasing the degree of freedom at one level of hierarchy induces positive interactions across hierarchical control levels, which in turn positively affects the accuracy and precision of task performance.
Keywords
Motor redundancy; Hierarchical synergy; UCM Hypothesis;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
연도 인용수 순위
1 Li, Z. M., Latash, M. L. & Zatsiorsky, V. M. (1998). Force sharing among fingers as a model of the redundancy problem. Experimental Brain Research, 119(3), 276-286. doi:DOI 10.1007/s002210050343   DOI
2 Olafsdottir, H., Yoshida, N., Zatsiorsky, V. M. & Latash, M. L. (2005). Anticipatory covariation of finger forces during selfpaced and reaction time force production. Neuroscience Letters, 381(1-2), 92-96. doi:10.1016/j.neulet.2005.02.003   DOI
3 Park, J., Baum, B. S., Kim, Y. S., Kim, Y. H. & Shim, J. K. (2012). prehension synergy: use of mechanical advantage during multifinger torque production on mechanically fixed and free objects. Journal of Applied Biomechanics, 28(3), 284-290. doi:DOI 10.1123/jab.28.3.284   DOI
4 Park, J., Jo, H. J., Lewis, M. M., Huang, X. M. & Latash, M. L. (2013). Effects of Parkinson's disease on optimization and structure of variance in multi-finger tasks. Experimental Brain Research, 231(1), 51-63. doi:10.1007/s00221-013-3665-3   DOI
5 Quan, C. H. & Lee, S. M. (2016). Relationship between Aiming Patterns and Scores in Archery Shooting. Korean Journal of Sport Biomechanics, 26(4), 353-360. doi:http://dx.doi.org/10.5103/KJSB.2016.26.4.353   DOI
6 Scholz, J. P., Danion, F., Latash, M. L. & Schoner, G. (2002). Understanding finger coordination through analysis of the structure of force variability. Biological Cybernetics, 86(1), 29-39. doi:10.1007/s004220100279   DOI
7 Scholz, J. P. & Latash, M. L. (1998). A study of a bimanual synergy associated with holding an object. Human Movement Science, 17(6), 753-779. doi:10.1016/S0167-9457(98)00025-6   DOI
8 Scholz, J. P. & Schoner, G. (1999). The uncontrolled manifold concept: identifying control variables for a functional task. Experimental Brain Research, 126(3), 289-306. doi:10.1007/s002210050738   DOI
9 Scholz, J. P., Schoner, G. & Latash, M. L. (2000). Identifying the control structure of multi joint coordination during pistol shooting. Experimental Brain Research, 135(3), 382-404. doi: 10.1007/s002210000540   DOI
10 Shim, J. K., Latash, M. L. & Zatsiorsky, V. M. (2005). Prehension synergies: Trial-to-trial variability and principle of superposition during static prehension in three dimensions. Journal of Neurophysiology, 93(6), 3649-3658. doi:10.1152/jn.01262.2004   DOI
11 Zatsiorsky, V. M., Gao, F. & Latash, M. L. (2003). Finger force vectors in multi-finger prehension. Journal of Biomechanics, 36(11), 1745-1749. doi:10.1016/S0021-9290(03)00062-9   DOI
12 Latash, M. L. (2008). Synergy: Oxford University Press.
13 Baud-Bovy, G. & Soechting, J. F. (2001). Two virtual fingers in the control of the tripod grasp. Journal of Neurophysiology, 86(2), 604-615.   DOI
14 Bernstein, N. A. (1967). The co-ordination and regulation of movements. Oxford: Pergamon Press.
15 Domkin, D., Laczko, J., Jaric, S., Johansson, H. & Latash, M. L. (2002). Structure of joint variability in bimanual pointing tasks. Experimental Brain Research, 143(1), 11-23. doi: 10.1007/s00221-001-0944-1   DOI
16 Gao, F., Latash, M. L. & Zatsiorsky, V. M. (2005). Internal forces during object manipulation. Experimental Brain Research, 165(1), 69-83. doi:10.1007/s00221-005-2282-1   DOI
17 Gelfand, I. M. & Tsetlin, M. l. (1966). On mathematical modeling of the mechanisms of the central nervous system. Gelfan IM, Gurfinkel Vs, Fomin sV, tsetlin Ml (eds) Models of the structural-functional organization organization of certain biological systems. Nauka, Moscow, 9-26.
18 Gorniak, S. L., Zatsiorsky, V. M. & Latash, M. L. (2007). Hierarchies of synergies: an example of two-hand, multi-finger tasks. Experimental Brain Research, 179(2), 167-180. doi:10.1007/s00221-006-0777-z   DOI
19 Kang, N., Shinohara, M., Zatsiorsky, V. M. & Latash, M. L. (2004). Learning multi-finger synergies: an uncontrolled manifold analysis. Experimental Brain Research, 157(3), 336-350. doi: 10.1007/s00221-004-1850-0   DOI
20 Kim, D. K. (2017). The effects of the upright body type exercise program on body balance and record of archers. Korean Journal of Sport Biomechanics, 28(1), 9-18. doi:10.5103/KJSB.2017.28.1.9   DOI
21 Kim, K., Xu, D. & Park, J. (2017). Effect of kinetic degrees of freedom of the fingers on the task performance during force production and release: Archery shooting-like action. Korean Journal of Sport Biomechanics, 27(2), 117-124. doi: 10.5103/KJSB.2017.27.2.117   DOI
22 Kim, K., Xu, D. & Park, J. (2018). Effect of kinetic degrees of freedom on multi-finger synergies and task performance during force production and release tasks. Scientific Reports, 8. doi:10.1038/s41598-018-31136-8
23 Latash, M. L. (2000). There is no motor redundancy in human movements. There is motor abundance. Motor Control, 4(3), 259-261.   DOI
24 Latash, M. L., Scholz, J. F., Danion, F. & Schoner, G. (2001). Structure of motor variability in marginally redundant multifinger force production tasks. Experimental Brain Research, 141(2), 153-165. doi:10.1007/s002210100861   DOI
25 Latash, M. L., Scholz, J. P. & Schoner, G. (2007). Toward a new theory of motor synergies. Motor Control, 11(3), 276-308. doi:10.1123/mcj.11.3.276   DOI
26 Latash, M. L. & Zatsiorsky, V. M. (2009). Multi-finger prehension: control of a redundant mechanical system. Progress in Motor Control: A Multidisciplinary Perspective, 629, 597-618. doi:10.1007/978-0-387-77064-2_32   DOI
27 Li, S., Danion, F., Zatsiorsky, V. M. & Latash, M. L. (2002). Coupling phenomena during asynchronous submaximal two-hand, multi-finger force production tasks in humans. Neuroscience Letters, 331(2), 75-78. doi:Pii S0304-3940(02)00869-8   DOI