Browse > Article
http://dx.doi.org/10.5103/KJSB.2018.28.4.199

Anterior Cruciate Ligament Injury is Unlikely to Occur when Performing a Stable Weight Lifting Operation  

Moon, Youngjin (Department of Sports Science, Chungnam National University)
Moon, Jeheon (Department of Sports Science, Korea Institute of Sport Science, Korea Sports Promotion Foundation)
Publication Information
Korean Journal of Applied Biomechanics / v.28, no.4, 2018 , pp. 199-205 More about this Journal
Abstract
Objective: The purpose of this study was to examine the effect of increase in barbell weight on closely related variable to the anterior cruciate ligament (ACL) injury which are knee joint kinematics, joint load, joint moment, and maximum load attainment point during snatch of the weight lifting. Method: The subjects of the study were 10 male Korean national weight lifting athletes (69 kg 5, 77 kg 5; age: $21.80{\pm}3.91yrs.$, height: $168.00{\pm}4.06cm$, weight: $75.00{\pm}4.02kg$, career: $7.8{\pm}3.99yrs.$, snatch records: $168{\pm}4.06kg$). The weight of the barbell during the snatch operation was set at 70%, 75% and 80% of the highest records for each subject studied. Results: The result obtained from the one-way repeated measure ANOVA are as follows: With increased barbell weight, the extension moment of the left knee joint was higher in the 80% condition than the 70% (p<.001). However, other variables were not statistically significant difference. According to the factor analysis of the variables related to maximum load attainment point of the ACL major injury variables, the first sub-factor was the internal shear force, the posterior shear force, the abduction moment, and the muscle activity of the VL. The second sub-factor was the extension moment of the knee joint, compressive force, adduction moment, and the third sub-factor was the muscle activity of BF. Conclusion: These results indicate that the possibility of ACL injury can be lowered when performing a stable snatch movement.
Keywords
Weight lifting; Snatch; ACL injury; Knee load;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Bere, T., Florenes, T. W., Krosshaug, T., Koga, H., Nordsletten, L., Irving, C., Muller, E., Cortas Reid, R., Senner, V. & Bahr, R. (2011). Mechanisms of anterior cruciate ligament injury in World Cup alpine skiing a systematic video analysis of 20 cases. The American Journal of Sports Medicine, 39(7), 1421-1429.   DOI
2 Berns, G. S., Hull, M. L. & Patterson, H. A. (1992). Strain in the anteromedial bundle of the anterior cruciate ligament under combination loading. Journal of Orthopaedic Research, 10(2), 167-176.   DOI
3 Boden, B. P., Dean, G. S., Feagin Jr, J. A. & Garrett Jr, W. E. (2000). Mechanisms of anterior cruciate ligament injury. Orthopedics, 23(6), 573-578.
4 Cappozzo, A., Cappello, A., Croce, U. D. & Pensalfini, F. (1997). Surface-Marker Cluster Design for 3-D Bone Movement Reconstruction. IEEE Transactions on Biomedical Engineering, 44(12), 1165-1174.
5 Collins, T. D., Ghoussayni, S. N., Ewins, D. J. & Kent, J. A. (2009). A six degrees-of-freedom marker set for gait analysis: repeatability and comparison with a modified Helen Hayes set. Gait & Posture, 30(2), 173-180, 2009.   DOI
6 DeMorat, G., Weinhold, P., Blackburn, T., Chudik, S. & Garrett, W. (2004). Aggressive quadriceps loading can induce noncontact anterior cruciate ligament injury. The American Journal of Sports Medicine, 32(2), 477-483.   DOI
7 Fukuda, Y., Woo, S. L. Y., Loh, J. C., Tsuda, E., Tang, P., McMahon, P. J. & Debski, R. E. (2003). A quantitative analysis of valgus torque on the ACL: a human cadaveric study. Journal of Orthopaedic Research, 21(6), 1107-1112.   DOI
8 Hadi, G., Akkus, H. & Harbili, E. (2012). Three-dimensional kinematic analysis of the snatch technique for lifting different barbell weights. The Journal of Strength & Conditioning Research, 26(6), 1568-1576.   DOI
9 Hollis, J. M., Takai, S., Adams, D. J., Horibe, S. & Woo, S. Y. (1991). The effects of knee motion and external loading on the length of the anterior cruciate ligament (ACL): a kinematic study. Journal of Biomechanical Engineering, 113(2), 208-214.   DOI
10 Hewett, T. E., Myer, G. D., Ford, K. R., Heidt, R. S., Colosimo, A. J., McLean, S. G., van den Bogert, A. J., Paterno, M. V. & Succop, P. (2005). Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes a prospective study. The American Journal of Sports Medicine, 33(4), 492-501.   DOI
11 Keogh, J., Hume, P. A. & Pearson, S. (2006). Retrospective injury epidemiology of one hundred one competitive Oceania power lifters: the effects of age, body mass, competitive standard, and gender. The Journal of Strength & Conditioning Research, 20(3), 672.   DOI
12 Majewski, M., Susanne, H. & Klaus, S. (2006). Epidemiology of athletic knee injuries: a 10-year study. The Knee, 13(3), 184-188.   DOI
13 Kernozek, T. W. & Ragan, R. J. (2008). Estimation of anterior cruciate ligament tension from inverse dynamics data and electromyography in females during drop landing. Clinical Biomechanics, 23(10), 1279-1286.   DOI
14 Koga, H., Nakamae, A., Shima, Y., Iwasa, J., Myklebust, G., Engebretsen, L., Bahr, R. & Krosshaug, T. (2010). Mechanisms for noncontact anterior cruciate ligament injuries knee joint kinematics in 10 injury situations from female team handball and basketball. The American Journal of Sports Medicine, 38(11), 2218-2225.   DOI
15 Laughlin, W. A., Weinhandl, J. T., Kernozek, T. W., Cobb, S. C., Keenan, K. G. & O'Connor, K. M. (2011). The effects of single-leg landing technique on ACL loading. Journal of Biomechanics, 44(10), 1845-1851.   DOI
16 Lin, C. F., Gross, M., Ji, C., Padua, D., Weinhold, P., Garrett, W. E. & Yu, B. (2009). A stochastic biomechanical model for risk and risk factors of non-contact anterior cruciate ligament injuries. Journal of Biomechanics, 42(4), 418-423.   DOI
17 Lorenzetti, S., Gulay, T., Stoop, M., List, R., Gerber, H., Schellenberg, F. & Stussi, E. (2012). Comparison of the angles and corresponding moments in the knee and hip during restricted and unrestricted squats. The Journal of Strength & Conditioning Research, 26(10), 2829-2836.   DOI
18 Markolf, K. L., Burchfield, D. M., Shapiro, M. M., Shepard, M. F., Finerman, G. A. & Slauterbeck, J. L. (1995). Combined knee loading states that generate high anterior cruciate ligament forces. Journal of Orthopaedic Research, 13(6), 930-935.   DOI
19 McLean, S. G., Huang, X., Su, A. & van den Bogert, A. J. (2004). Sagittal plane biomechanics cannot injure the ACL during sidestep cutting. Clinical Biomechanics, 19(8), 828-838.   DOI
20 McLean, S. G., Huang, X. & van den Bogert, A. J. (2008). Investigating isolated neuromuscular control contributions to non-contact anterior cruciate ligament injury risk via computer simulation methods. Clinical Biomechanics, 23(7), 926-936.   DOI
21 Moon, Y. J. (2016). Evaluation of Biomechanical Movements and Injury Risk Factors in Weight Lifting (Snatch). Korean Journal of Sport Biomechanics, 26(4), 369-375.   DOI
22 Moon, Y. J., Kwon, A. S. & Lee, G. S. (2011). Development and Kinematic Evaluation for Training Method to Strengthen Part Motion of Snatch in Weight Lifting. Korean Journal of Sport Biomechanics, 21(2), 153-159.   DOI
23 Raske, A. & Norlin, R. (2002). Injury incidence and prevalence among elite weight and power lifters. The American Journal of Sports Medicine, 30(2), 248-256.
24 Moon, Y. J. & Stefanyshyn, D. (2015). 3-Dimensional Performance Optimization Model of Snatch Weightlifting. Korean Journal of Sport Biomechanics, 25(2), 157-165.   DOI
25 Olsen, O. E., Myklebust, G., Engebretsen, L. & Bahr, R. (2004). Injury mechanisms for anterior cruciate ligament injuries in team handball a systematic video analysis. The American Journal of Sports Medicine, 32(4), 1002-1012.   DOI
26 Pflum, M. A., Shelburne, K. B., Torry, M. R., Decker, M. J. & Pandy, M. G. (2004). Model prediction of anterior cruciate ligament force during drop-landings. Medicine and Science in Sports and Exercise, 36(11), 1949-1958.   DOI
27 Ronnestad, B. R., Holden, G., Samnoy, L. E. & Paulsen, G. (2012). Acute effect of whole-body vibration on power, one-repetition maximum, and muscle activation in power lifters. The Journal of Strength & Conditioning Research, 26(2), 531-539.   DOI
28 Schoenfeld, B. J. (2010). Squatting kinematics and kinetics and their application to exercise performance. The Journal of Strength & Conditioning Research, 24(12), 3497-3506.   DOI
29 Weinhandl, J. T., Earl-Boehm, J. E., Ebersole, K. T., Huddleston, W. E., Armstrong, B. S. & O'Connor, K. M. (2013). Anticipatory effects on anterior cruciate ligament loading during sidestep cutting. Clinical Biomechanics, 28(6), 655-663.   DOI
30 Shin, C. S., Chaudhari, A. M. & Andriacchi, T. P. (2007). The influence of deceleration forces on ACL strain during single-leg landing: a simulation study. Journal of Biomechanics, 40(5), 1145-1152.   DOI
31 Whitting, J. W., Meir, R. A., Crowley-McHattan, Z. J. & Holding, R. C. (2016). Influence of footwear type on barbell back squat using 50, 70, and 90% of one repetition maximum: A biomechanical analysis. The Journal of Strength & Conditioning Research, 30(4), 1085-1092.   DOI
32 Withrow, T. J., Huston, L. J., Wojtys, E. M. & Ashton-Miller, J. A. (2006). The relationship between quadriceps muscle force, knee flexion, and anterior cruciate ligament strain in an in vitro simulated jump landing. The American Journal of Sports Medicine, 34(2), 269-274.   DOI
33 Wu, G., Van Der Helm, F. C., Veeger, H. D., Makhsous, M., Van Roy, P., Anglin, C., Nagels, J., Karduna, A. R., McQuade, K., Wang, X., Werner, F. W. & Buchholz, B. (2005). ISB recommendation on definitions of joint coordinate systems of various joints for the reporting of human joint motion-Part II: shoulder, elbow, wrist and hand. Journal of Biomechanics, 38(5), 981-992.   DOI
34 Yu, B. & Garrett, W. E. (2007). Mechanisms of non-contact ACL injuries. British Journal of Sports Medicine, 41(1), i47-i51.
35 Seering, W. P., Piziali, R. L., Nagel, D. A. & Schurman, D. J. (1980). The function of the primary ligaments of the knee in varus-valgus and axial rotation. Journal of biomechanics, 13(9), 785-794.   DOI